Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 7 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Sensitive and Liquefiable Soils: Tailings and Other Highly Brittle Strain-Softening Soils | |
DOI | https://doi.org/10.1051/e3sconf/202454414002 | |
Published online | 02 July 2024 |
- Adamidis, O., and G. S. P. Madabhushi. 2018. “Partial drainage during earthquake-induced liquefaction.” In Physical Modelling in Geotechnics, pp. 937–942. CRC Press. https://doi.org/10.1201/9780429438646-26 [Google Scholar]
- ASTM. 2016. “Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter”. ASTM D5084, Annual Book of Standards, ASTM International, West Conshohocken, PA. [Google Scholar]
- Bayoumi, A., A. Mhenni, M. Chekired, and M. Karray. 2022. “Porous Stones in Permeability Measurement: Drawbacks and Solution.” Canadian Geotechnical Journal. https://doi.org/10.1139/cgj-2021-0400 [Google Scholar]
- Bear, J. 1988. “Dynamics of fluids in porous media”. Courier Corporation. [Google Scholar]
- Bray, J. D., and D. Hutabarat. 2022. “CPT-based liquefaction ejecta evaluation procedure.” In Cone Penetration Testing 2022, pp. 844–849. CRC Press. https://doi.org/10.1201/9781003308829-125 [Google Scholar]
- Carman, P. C. 1956. “Flow of gases through porous media”. [Google Scholar]
- Chapuis, R. P. 2012. “Predicting the saturated hydraulic conductivity of soils: a review.” Bulletin of engineering geology and the environment 71, no.3, pp. 401–434. https://doi.org/10.1007/s10064-012-0418-7 [Google Scholar]
- Daniel, D.E., D.C., Anderson, S.S., Boynton. 1985. “Fixed-Wall Versus Flexible-Wall Permeameters”. Hydraul. Barriers Soil Rock. https://doi.org/10.1520/STP34573S [Google Scholar]
- Dinesh, N., B., Subhadeep, and R., Karpurapu. 2022. “Performance evaluation of PM4Sand model for simulation of the liquefaction remedial measures for embankment.” Soil Dynamics and Earthquake Engineering, no. 152. https://doi.org/10.1016/j.soildyn.2021.107042 [Google Scholar]
- Duncan, J. M. 2000. “Factors of safety and reliability in geotechnical engineering.” Journal of Geotechnical Engineering 126, no. 4. pp. 307–316. https://doi.org/10.1061/(ASCE)1090- 0241(2000)126:4(307) [CrossRef] [Google Scholar]
- Elgamal, A., E., Parra, Z., Yang, and A., Korhan. 2002. “Numerical analysis of embankment foundation liquefaction countermeasures.” Journal of Earthquake Engineering 6, no. 04. https://doi.org/10.1080/13632460209350425 [Google Scholar]
- Fioravante, V., D. Giretti, S. Airoldi, and J. Moglie. 2021. “Effects of seismic input, fine crust and existing structure on liquefaction from centrifuge model tests.” Bulletin of Earthquake Engineering 19, no. 10 , pp. 3807–3833. https://doi.org/10.1007/s10518-021-01139-4 [Google Scholar]
- Greenshields, C., and H. Weller. 2022.”Notes on Computational Fluid Dynamics: General Principles.” CFD Direct Ltd.: Reading, UK. [Google Scholar]
- Haigh, S. K., J. Eadington, and S. P. G. Madabhushi. 2012. “Permeability and stiffness of sands at very low effective stresses.” Geotechnique 62, no. 1, pp. 69–75. https://doi.org/10.1680/geot.10.P.035 [CrossRef] [Google Scholar]
- Huang, X., K. J. Hanley, C. O’Sullivan, and F. CY Kwok. 2014. “Effect of sample size on the response of DEM samples with a realistic grading.” Particuology 15, pp. 107–115. https://doi.org/10.1016/j.partic.2013.07.006 [CrossRef] [Google Scholar]
- Hutabarat, D., and J.D, Bray. 2021. “Effective stress analysis of liquefiable sites to estimate the severity of sediment ejecta” Journal of Geotechnical and Geoenvironmental Engineering 147, no. 5. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002503 [Google Scholar]
- Knight C., 2019. “Fluid flow and drag in polydisperse granular materials subject to laminar seepage flow”. Ph.D. thesis, Imperial College London, London, UK. https://doi.org/10.25560/67823. [Google Scholar]
- Knight, C.. 2021. mesh-sphere-packing. https://github.com/chrisk314/mesh-sphere-packing [Google Scholar]
- Kozeny, J.. 1927. “Uber kapillare leitung der wasser in boden.” Royal Academy of Science, Vienna, Proc. Class I 136, pp. 271–306. [Google Scholar]
- Kuhn, M. R., W. Sun, and Q. Wang. 2015. “Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability.” Acta Geotechnica 10, no. 4, pp. 399–419. https://doi.org/10.1007/s11440-015-0397-5 [CrossRef] [Google Scholar]
- Li, Y., M. Chen Ong, and T. Tang. 2018. “Numerical analysis of wave-induced poro-elastic seabed response around a hexagonal gravity-based offshore foundation.” Coastal Engineering 136 , pp. 81–95. https://doi.org/10.1016/j.coastaleng.2018.02.005 [Google Scholar]
- Malekmakan, M., H. Shahir, and P. Ayoubi. 2021. “Investigation of liquefaction-induced lateral spreading of gently sloping grounds using a variable permeability model.” International Journal for Numerical and Analytical Methods in Geomechanics 45, no. 12, pp. 1809-1832. https://doi.org/10.1002/nag.3243 [CrossRef] [Google Scholar]
- OpenFOAM. .Accessed April 20, 2022. https://www.openfoam.com/ [Google Scholar]
- OpenFOAM Foundation, OpenFOAM v7 User Guide, https://cfd.direct/openfoam/ [Google Scholar]
- Plimpton, S.. 1995. “Fast parallel algorithms for short-range molecular dynamics.” Journal of computational physics 117, no. 1, pp.1-19. https://doi.org/10.1006/jcph.1995.1039 [CrossRef] [Google Scholar]
- Potts, D.M., L., Zdravković, T., Addenbrooke, K. G., Higgins, and N., Kovačević. 2001. “Finite element analysis in geotechnical engineering: application”. Vol. 2. London: Thomas Telford. https://doi.org/10.1680/feaigea.27831 [Google Scholar]
- Robertson, P. K. 2010. “Estimating in-situ soil permeability from CPT & CPTu.” In Memorias del 2nd International Symposium on Cone Penetration Testing, California State Polytechnic University Pomona, CA. [Google Scholar]
- Shahir, H., B. Mohammadi-Haji, and A. Ghassemi. 2014. “Employing a variable permeability model in numerical simulation of saturated sand behavior under earthquake loading.” Computers and Geotechnics 55, pp.211-223. https://doi.org/10.1016/j.compgeo.2013.09.007 [CrossRef] [Google Scholar]
- Shaker, A. A., M. Dafalla, A. M. Al-Mahbashi, and M. A. Al- Shamrani. 2022. “Predicting Hydraulic Conductivity for Flexible Wall Conditions Using Rigid Wall Permeameter.” Water 14, no. 3 pp.286-292. https://doi.org/10.3390/w14030286 [Google Scholar]
- Shire, T., C. O’Sullivan, D. Barreto, and G. Gaudray. 2013. “Quantifying stress-induced anisotropy using inter-void constrictions.” Géotechnique 63, no. 1, pp 85-91. https://doi.org/10.1680/geot.11.T.020 [Google Scholar]
- Verdugo, R., and K. Ishihara. 1996. “The steady state of sandy soils.” Soils and foundations 36, no. 2, pp-81-91. https://doi.org/10.3208/sandf.36.2_81 [Google Scholar]
- Wang, L. 2021. “Vertical response of a pile embedded in highly-saturated soil with compressible pore fluid and anisotropic permeability.” Computers and Geotechnics no. 140. https://doi.org/10.1016/j.compgeo.2021.104462 [Google Scholar]
- Weller H. G., G. Tabor, H. Jasak, C. Fureby. 1998. “A tensorial approach to computational continuum mechanics using object-oriented techniques”, Computers in Physics, vol. 12, no. 6. https://doi.org/10.1063/1.168744 [Google Scholar]
- Xie, X., B. Ye, T. Zhao, X. Feng, and F. Zhang. 2021. “Changes in sand mesostructure under repeated seismic liquefaction events during centrifuge tests.” Soil Dynamics and Earthquake Engineering no. 150,. https://doi.org/10.1016/j.soildyn.2021.106940 [Google Scholar]
- Yang, J. and H. Y., Sze. 2011. “Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions”. Geotechnique 61, no.1, pp. 59–73. https://doi.org/10.1680/geot.9.P.019 [Google Scholar]
- Zhao, B., and C. O’Sullivan. 2022. “Fluid particle interaction in packings of monodisperse angular particles.” Powder Technology no. 395, pp. 133–148. https://doi.org/10.1016/j.powtec.2021.09.022 [CrossRef] [Google Scholar]
- Zick, A. A., and G. M. Homsy. 1982. “Stokes flow through periodic arrays of spheres.” Journal of fluid mechanics no. 115, pp. 13–26. https://doi.org/10.1017/S0022112082000627 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.