Open Access
Issue |
E3S Web Conf.
Volume 545, 2024
2024 9th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 7 | |
Section | Renewable Energy Technology and Energy Management | |
DOI | https://doi.org/10.1051/e3sconf/202454501001 | |
Published online | 04 July 2024 |
- R. Turconi, A. Boldrin, T. Astrup, Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations, Renewable Sustainable Energy Rev. 28, 555–565 (2013). [CrossRef] [Google Scholar]
- H.L. Raadal, L. Gagnon, I.S. Modahl, O.J. Hanssen, Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power, Renewable Sustainable Energy Rev. 15, 3417–3422 (2011). [CrossRef] [Google Scholar]
- J. Peng, L. Lu, H. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, Renewable Sustainable Energy Rev. 19, 255–274 (2013). [CrossRef] [Google Scholar]
- C. Marimuthu, V. Kirubakaran, Carbon pay back period for solar and wind energy project installed in India: A critical review, Renewable Sustainable Energy Rev. 23, 80–90 (2013). [CrossRef] [Google Scholar]
- K. Tahara, T. Kojima, A. Inaba, Evaluation of CO2 payback time of power plants by LCA, Energy Convers Manag 38, S615–S620 (1997). [CrossRef] [Google Scholar]
- F. Kreith, P. Norton, D. Brown, A comparison of CO2 emissions from fossil and solar power plants in the United States, Energy 15, 1181–1198 (1990). [CrossRef] [Google Scholar]
- L. Schleisner, Life cycle assessment of a wind farm and related externalities, Renew Energy 20, 279–288 (2000). [CrossRef] [Google Scholar]
- Y. Tripanagnostopoulos, M. Souliotis, R. Battisti, A. Corrado, Energy, cost and LCA results of PV and hybrid PV/T solar systems, Progress in Photovoltaics: Research and Applications 13, 235–250 (2005). [CrossRef] [Google Scholar]
- C. Lausselet, K.M. Lund, H. Brattebø, LCA and scenario analysis of a Norwegian net-zero GHG emission neighbourhood: The importance of mobility and surplus energy from PV technologies, Build Environ 189, 107528 (2021). [CrossRef] [Google Scholar]
- J. Moore, A Comparison of the Environmental Effects of Renewable and Non-Renewable Energies, (2021). [Google Scholar]
- R. Turconi, D. Tonini, C.F.B. Nielsen, C.G. Simonsen, T. Astrup, Environmental impacts of future low-carbon electricity systems: detailed life cycle assessment of a Danish case study, Appl. Energy 132, 66–73 (2014). [CrossRef] [Google Scholar]
- M. Ozturk, I. Dincer, Comparative environmental impact assessment of various fuels and solar heat for a combined cycle, Int. J. Hydrogen Energy 44, 5043–5053 (2019). [CrossRef] [Google Scholar]
- M. Gandiglio, P. Marocco, I. Bianco, D. Lovera, G.A. Blengini, M. Santarelli, Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community, Int J Hydrogen Energy 47 (2022). https://doi.org/10.1016/j.ijhydene.2022.07.199. [Google Scholar]
- G. Zhao, A.S. Pedersen, Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory, in: Procedia CIRP, 2018. https://doi.org/10.1016/j.procir.2017.11.100. [Google Scholar]
- D. Bionaz, P. Marocco, D. Ferrero, K. Sundseth, M. Santarelli, Life cycle environmental analysis of a hydrogen-based energy storage system for remote applications, Energy Reports 8 (2022). https://doi.org/10.1016/j.egyr.2022.03.181. [Google Scholar]
- M. Ozoemena, W.M. Cheung, R. Hasan, Comparative LCA of technology improvement opportunities for a 1.5-MW wind turbine in the context of an onshore wind farm, Clean Technol Environ Policy 20 (2018). https://doi.org/10.1007/s10098017-1466-2. [Google Scholar]
- S. Jahromi, S.F. Moosavian, M. Yaghoubirad, N. Azizi, A. Ahmadi, 4E analysis of the horizontal axis wind turbine with LCA consideration for different climate conditions, Energy Sci Eng 10 (2022). https://doi.org/10.1002/ese3.1272. [Google Scholar]
- J. An, Z. Zou, G. Chen, Y. Sun, R. Liu, L. Zheng, An IoT-based life cycle assessment platform of wind turbines, Sensors (Switzerland) 21 (2021). https://doi.org/10.3390/s21041233. [Google Scholar]
- M. Pehnt, Life-cycle assessment of fuel cell stacks, Int J Hydrogen Energy 26 (2001). https://doi.org/10.1016/S0360-3199(00)00053-7. [Google Scholar]
- T.M. Gulotta, R. Salomone, F. Lanuzza, G. Saija, G. Mondello, G. Ioppolo, Life Cycle Assessment and Life Cycle Costing of unitized regenerative fuel cell: A systematic review, Environ Impact Assess Rev 92 (2022). https://doi.org/10.1016/j.eiar.2021.106698. [CrossRef] [Google Scholar]
- M.A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E.T. Sayed, A. Olabi, Environmental aspects of fuel cells: A review, Science of the Total Environment 752 (2021). https://doi.org/10.1016/j.scitotenv.2020.141803. [CrossRef] [Google Scholar]
- D. Garraín, Y. Lechón, Exploratory environmental impact assessment of the manufacturing and disposal stages of a new PEM fuel cell, Int J Hydrogen Energy 39 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.095. [Google Scholar]
- K. Bareiß, C. de la Rua, M. Möckl, T. Hamacher, Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems, Appl Energy 237 (2019). https://doi.org/10.1016/j.apenergy.2019.01.001. [Google Scholar]
- J. Famiglietti, T. Toppi, D. Bonalumi, M. Motta, Heat pumps for space heating and domestic hot water production in residential buildings, an environmental comparison in a present and future scenario, Energy Convers Manag 276 (2023). https://doi.org/10.1016/j.enconman.2022.116527. [CrossRef] [Google Scholar]
- D. Saner, R. Juraske, M. Kübert, P. Blum, S. Hellweg, P. Bayer, Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems, Renewable and Sustainable Energy Reviews 14 (2010). https://doi.org/10.1016/j.rser.2010.04.002. [Google Scholar]
- G. Naumann, E. Schropp, M. Gaderer, Life Cycle Assessment of an Air-Source Heat Pump and a Condensing Gas Boiler Using an Attributional and a Consequential Approach, in: Procedia CIRP, 2022. https://doi.org/10.1016/j.procir.2022.02.058. [Google Scholar]
- R. Yudhistira, D. Khatiwada, F. Sanchez, A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage, J Clean Prod 358 (2022). https://doi.org/10.1016/j.jclepro.2022.131999. [CrossRef] [Google Scholar]
- A. Peppas, K. Kollias, A. Politis, L. Karalis, M. Taxiarchou, I. Paspaliaris, Performance evaluation and life cycle analysis of RES-hydrogen hybrid energy system for office building, Int. J. Hydrogen Energy 46, 6286–6298 (2021). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.