Open Access
Issue
E3S Web Conf.
Volume 545, 2024
2024 9th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2024)
Article Number 03003
Number of page(s) 11
Section Energy Chemical Engineering and Thermal Storage Technology
DOI https://doi.org/10.1051/e3sconf/202454503003
Published online 04 July 2024
  1. M. El Fiti, M. Salihi, Y. Harmen, Y. Chhiti, A. Chebak, F.E. M’Hamdi Alaoui, M. Achak, F. Bentiss, C. Jama, Energetic performance optimization of a coaxial phase change material (PCM) regenerator, J. Energy Storage. 50 (2022) 104571. https://doi.org/10.1016/J.EST.2022.104571. [CrossRef] [Google Scholar]
  2. M.E.H. Amagour, M. Bennajah, A. Rachek, Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage, J. Clean. Prod. 280 (2021) 124238. https://doi.org/10.1016/J.JCLEPRO.2020.124238. [CrossRef] [Google Scholar]
  3. R. Karami, B. Kamkari, Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems, Energy Convers. Manag. 210 (2020) 112679. https://doi.org/10.1016/j.enconman.2020.112679. [CrossRef] [Google Scholar]
  4. X. Guo, X. Han, J. Lin, S. Liu, Z. Han, Effect of eccentricity and V-shaped fins on the heat transfer performance of a phase change heat storage system, J. Energy Storage. 73 (2023) 108833. https://doi.org/10.1016/j.est.2023.108833. [CrossRef] [Google Scholar]
  5. Y. Xu, Z.J. Zheng, S. Chen, X. Cai, C. Yang, Parameter analysis and fast prediction of the optimum eccentricity for a latent heat thermal energy storage unit with phase change material enhanced by porous medium, Appl. Therm. Eng. 186 (2021) 116485. https://doi.org/10.1016/j.applthermaleng.2020.116485. [CrossRef] [Google Scholar]
  6. Y. Harmen, Y. Chhiti, M. El Fiti, M. Salihi, C. Jama, Eccentricity analysis of annular multi-tube storage unit with phase change material, J. Energy Storage. 64 (2023) 2352–152. https://doi.org/10.1016/j.est.2023.107211. [CrossRef] [Google Scholar]
  7. M. Alizadeh, K. Hosseinzadeh, M.H. Shahavi, D.D. Ganji, Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material, Appl. Therm. Eng. 163 (2019) 114436. https://doi.org/10.1016/j.applthermaleng.2019.114436. [CrossRef] [Google Scholar]
  8. A.M. Abdulateef, S. Mat, K. Sopian, J. Abdulateef, A.A. Gitan, Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins, Sol. Energy. 155 (2017) 142–153. https://doi.org/10.1016/j.solener.2017.06.024. [CrossRef] [Google Scholar]
  9. P. Yan, W. Fan, Y. Yang, H. Ding, A. Arshad, C. Wen, Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations, Appl. Energy. 327 (2022) 120064. https://doi.org/10.1016/j.apenergy.2022.120064. [CrossRef] [Google Scholar]
  10. N. Bianco, S. Busiello, M. Iasiello, G.M. Mauro, Finned heat sinks with phase change materials and metal foams: Pareto optimization to address cost and operation time, Appl. Therm. Eng. 197 (2021) 117436. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117436. [CrossRef] [Google Scholar]
  11. Y. Shuai, C. Zhang, X. Hu, S. He, X. lu Gong, A comprehensive structural parameter for optimization of thermal performance of PCM embedded in periodic cuboid cell metal foam, Int. Commun. Heat Mass Transf. 146 (2023) 106936. https://doi.org/10.1016/j.icheatmasstransfer.2023.106936. [CrossRef] [Google Scholar]
  12. R.S. Ferfera, B. Madani, Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams, Int. J. Heat Mass Transf. 148 (2020) 119162. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.119162. [CrossRef] [Google Scholar]
  13. N. Ouahabi, A. Chebak, M. Berquedich, O. Kamach, M. Zegrari, Deploying Digital Twin in Manufacturing Systems: Scope and Requirements, Lect. Notes Networks Syst. 711 LNNS (2023) 639–650. https://doi.org/10.1007/978-3-031-377174_41/FIGURES/2. [CrossRef] [Google Scholar]
  14. K. Merlin, D. Delaunay, J. Soto, L. Traonvouez, Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM, Appl. Energy. 166 (2016) 107–116. https://doi.org/10.1016/j.apenergy.2016.01.012. [CrossRef] [Google Scholar]
  15. J. Zhang, Z. Cao, S. Huang, X. Huang, K. Liang, Y. Yang, H. Zhang, M. Tian, M. Akrami, C. Wen, Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems, Appl. Energy. 322 (2022) 119416. https://doi.org/10.1016/j.apenergy.2022.119416. [CrossRef] [Google Scholar]
  16. J.M. Mahdi, E.C. Nsofor, Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination, Int. J. Heat Mass Transf. 109 (2017) 417–427. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.016. [CrossRef] [Google Scholar]
  17. M. Sheikholeslami, Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles, J. Energy Storage. 52 (2022) 104954. https://doi.org/10.1016/j.est.2022.104954. [CrossRef] [Google Scholar]
  18. C.P. V.R. Voller, A Fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems, Int. Jounal Heat Mass Transf. 30 (1978) 1709–1719. [Google Scholar]
  19. R. Qaiser, M.M. Khan, L.A. Khan, M. Irfan, Melting performance enhancement of PCM based thermal energy storage system using multiple tubes and modified shell designs, J. Energy Storage. 33 (2021) 102161. https://doi.org/10.1016/j.est.2020.102161. [CrossRef] [Google Scholar]
  20. M. Parsazadeh, X. Duan, Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system, Appl. Therm. Eng. 111 (2017) 950–960. https://doi.org/10.1016/j.applthermaleng.2016.09.133. [CrossRef] [Google Scholar]
  21. M. Nitsas, I.P. Koronaki, Performance analysis of nanoparticles-enhanced PCM: An experimental approach, Therm. Sci. Eng. Prog. 25 (2021) 100963. https://doi.org/10.1016/j.tsep.2021.100963. [CrossRef] [Google Scholar]
  22. N.S. Dhaidan, J.M. Khodadadi, T.A. Al-Hattab, S.M. Al-Mashat, Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity, Int. J. Heat Mass Transf. 67 (2013) 455–468. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.002. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.