Open Access
Issue |
E3S Web Conf.
Volume 546, 2024
2024 2nd International Conference on Green Building (ICoGB 2024)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 11 | |
Section | Green Building Design and Environmental Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202454601014 | |
Published online | 09 July 2024 |
- U. N. Environment, Emissions Gap Report 2023, UNEP UN Environment Programme. Accessed: Feb. 21, 2024. [Online]. Available: http://www.unep.org/resources/emissions-gap-report-2023 [Google Scholar]
- IPCC, Geneva, Switzerland., Intergovernmental Panel on Climate Change (IPCC), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Jul. 2023. doi: 10.59327/IPCC/AR69789291691647 [Google Scholar]
- “Energy Efficiency 2022 --Analysis,” IEA. Accessed: Feb. 21, 2024. [Online]. Available: https://www.iea.org/reports/energy-efficiency-2022 [Google Scholar]
- V. Rodrigues, A. A. Martins, M. I. Nunes, A. Quintas, T. M. Mata, N. S. Caetano, LCA of constructing an industrial building: Focus on embodied carbon and energy. En. Pro. 153, 420–425 (2018). https://doi:10.1016/j.egypro.2018.10.018. [Google Scholar]
- EU. Buildings and construction European Commission. Accessed: Apr. 28, 2024. [Online]. Available: https://single-marketeconomy.ec.europa.eu/industry/sustainability/buildings-and-construction_en [Google Scholar]
- L. F. Cabeza, L. Boquera, M. Chàfer, D. Vérez, Embodied energy and embodied carbon of structural building materials: Worldwide progress and barriers through literature map analysis. En. Build. 231, 110612 (2021). https://doi:10.1016/j.enbuild.2020.110612 [CrossRef] [Google Scholar]
- G. Kang, T. Kim, Y.-W. Kim, H. Cho, K.-I. Kang, Statistical analysis of embodied carbon emission for building construction. En. Build. 105, 326–333 (2015). https://doi:10.1016/j.enbuild.2015.07.058 [CrossRef] [Google Scholar]
- J. M. Greene, H. R. Hosanna, B. Willson, J. C. Quinn, Whole life embodied emissions and net-zero emissions potential for a mid-rise office building constructed with mass timber. Sustain. Mater. Technol. 35, e00528 (2023). https://doi:10.1016/j.susmat.2022.e00528 [Google Scholar]
- Md.U. Hossain, S. T. Ng, Critical consideration of buildings’ environmental impact assessment towards adoption of circular economy: An analytical review. Jour. Clean. Prod. 205, 763–780 (2018). https://doi:10.1016/j.jclepro.2018.09.120 [CrossRef] [Google Scholar]
- P. Ghisellini, M. Ripa, S. Ulgiati, Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Jour. Clean. Prod. 178, 618–643 (2018). https://doi:10.1016/j.jclepro.2017.11.207 [Google Scholar]
- EN 15978-Sustainability of construction works: assessment of environmental performance of buildings : calculation method, English version. London, UK: British Standards Institution, (2012) [Google Scholar]
- ISO 21930:2017-Sustainability in building construction. Environmental declaration of building products. (2017). Geneva, Switzerland [Google Scholar]
- B. Lei, W. Yang, Y. Yan, Z. Tang, W. Dong, Carbon Emission Reduction Evaluation of End-of-Life Buildings Based on Multiple Recycling Strategies. SUSTAIN. 15, 22. (2023). https://doi:10.3390/su152215711 [Google Scholar]
- EU, A new Circular Economy Action Plan. Mar. 11, (2020) [Google Scholar]
- H. Lei, L. Li, W. Yang, Y. Bian, C.-Q. Li, An analytical review on application of life cycle assessment in circular economy for built environment. Jour. Build. Eng. 44, 103374 (2021). https://doi:10.1016/j.jobe.2021.103374 [Google Scholar]
- J. L. K. Nußholz, F. Nygaard Rasmussen, L. Milios, Circular building materials: Carbon saving potential and the role of business model innovation and public policy. Resour. Conserv. Recycl. 141, 308–316 (2019). https://doi:10.1016/j.resconrec.2018.10.036 [CrossRef] [Google Scholar]
- A. E. Fenner et al, The carbon footprint of buildings: A review of methodologies and applications. Renew. Sustain. Ener. Rev. 94, 1142–1152 (2018). https://doi:10.1016/j.rser.2018.07.012 [CrossRef] [Google Scholar]
- L. F. Cabeza, L. Rincón, V. Vilariño, G. Pérez, A. Castell, Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Ener. Rev. 29, 394–416 (2014). https://doi:10.1016/j.rser.2013.08.037. [CrossRef] [Google Scholar]
- W. Pan, Y. Teng, A systematic investigation into the methodological variables of embodied carbon assessment of buildings. Renew. Sustain. Ener. Rev. 141, 110840 (2021). https://doi:10.1016/j.rser.2021.110840 [CrossRef] [Google Scholar]
- H. Islam, M. Jollands, S. Setunge, Life cycle assessment and life cycle cost implication of residential buildings A review. Renew. Sustain. Ener. Rev. 42, 129–140 (2015). https://doi:10.1016/j.rser.2014.10.006 [CrossRef] [Google Scholar]
- C. Gillott, W. Mihkelson, M. Lanau, D. Cheshire, D. Densley Tingley, Developing Regenerate: A circular economy engagement tool for the assessment of new and existing buildings. J. Ind. Ecol. 27 (2), 423–435 (2023). https://doi:10.1111/jiec.13377 [CrossRef] [Google Scholar]
- A. Akbarnezhad, J. Xiao, Estimation and minimization of embodied carbon of buildings: A review. Build. 7 (1), (2017). https://doi:10.3390/buildings7010005 [Google Scholar]
- J. K. W. Wong, J. Zhou, Enhancing environmental sustainability over building life cycles through green BIM: A review. Auto. Const. 57, 156–165 (2015). https://doi:10.1016/j.autcon.2015.06.003 [Google Scholar]
- K.-D. Wong. Q. Fan, Building information modelling (BIM) for sustainable building design. Facil. 31, 138–157 (2013). https://doi:10.1108/02632771311299412 [CrossRef] [Google Scholar]
- L. A. Akanbi et al., Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Res. Conser. and Recyc. 129, 175–186 (2018). https://doi:10.1016/j.resconrec.2017.10.026 [CrossRef] [Google Scholar]
- A. Gillich, Embodied Carbon NZG 4/2023 (BSRIA, UK, 2013) [Google Scholar]
- M. J. Page et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 71. (2021). doi: 10.1136/bmj.n71 [Google Scholar]
- F. Pomponi, A. Moncaster, Embodied carbon mitigation and reduction in the built environment - What does the evidence say?. Jour. Env. Manag. 181, 687–700 (2016). doi: 10.1016/j.jenvman.2016.08.036 [Google Scholar]
- M. Sansom, R. J. Pope, A comparative embodied carbon assessment of commercial buildings. Struct. Eng. 90 (10), 38–49 (2012). [Google Scholar]
- Z. Chen, H. Gu, R. D. Bergman, S. Liang, Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the athena impact estimator for buildings. Sustain. 12(11), 4708 (2020). https://doi:10.3390/su12114708 [CrossRef] [Google Scholar]
- A. Martínez-Rocamora, C. Rivera-Gómez, C. Galán-Marín, M. Marrero, Environmental benchmarking of building typologies through BIM-based combinatorial case studies. Auto. Const. 132, (2021). https://doi:10.1016/j.autcon.2021.103980. [Google Scholar]
- L. Ma, R. Azari, M. Elnimeiri, A Building Information Modeling-Based Life Cycle Assessment of the Embodied Carbon and Environmental Impacts of High-Rise Building Structures: A Case Study. Sustain. 16 (2), 569 (2024). https://doi:10.3390/su16020569 [CrossRef] [Google Scholar]
- A. A. Dani, K. Roy, R. Masood, Z. Fang, J. B. P. Lim, A Comparative Study on the Life Cycle Assessment of New Zealand Residential Buildings. Build. 12(1), 50 (2022) https://doi:10.3390/buildings12010050 [Google Scholar]
- F. S. Keskin, P. Martinez-Vazquez, C. Baniotopoulos, An integrated method to evaluate sustainability for vulnerable buildings addressing life cycle embodied impacts and resource use. Sustain. 13, 18, 10204 (2021). https://doi:10.3390/su131810204 [CrossRef] [Google Scholar]
- A. Blay-Armah, A. Bahadori-Jahromi, A. Mylona, M. Barthorpe, An LCA of building demolition waste: a comparison of end-of-life carbon emission. Pro. Inst. Civ. Engin.-Was. Rer. Manag. (2023). https://doi:10.1680/jwarm.22.00012 [Google Scholar]
- X. J. Luo, L. O. Oyedele, Assessment and optimisation of life cycle environment, economy and energy for building retrofitting. Ener. Sustain. Dev. 65, 77–100 (2021). https://doi:10.1016/j.esd.2021.10.002 [CrossRef] [Google Scholar]
- S. O. Ajayi, L. O. Oyedele, O. M. Ilori, Changing significance of embodied energy: A comparative study of material specifications and building energy sources. J. Build. Eng. 23, 324–333 (2019). https://doi:10.1016/j.jobe.2019.02.008 [CrossRef] [Google Scholar]
- S. Temizel-Sekeryan, F. C. Rios, F. Geremicca, M. M. Bilec, Circular Design and Embodied Carbon in Living Buildings: The Missing Potential. J. Archit. Eng. 29 (3), (2023). https://doi:10.1061/JAEIED.AEENG-1445 [CrossRef] [Google Scholar]
- D. Densley Tingley, B. Davison, Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build. Environ. 57, 387–395 (2012). https://doi:10.1016/j.buildenv.2012.06.005 [Google Scholar]
- E. Fregonara, R. Giordano, D. G. Ferrando, S. Pattono, Economic-environmental indicators to support investment decisions: A focus on the buildings’ end-of-life stage. Build. 7(3), (2017). https://doi:10.3390/buildings7030065 [Google Scholar]
- X. Su, S. Tian, X. Shao, X. Zhao, Embodied and operational energy and carbon emissions of passive building in HSCW zone in China: A case study. Ener. Build. 222, (2020). https://doi:10.1016/j.enbuild.2020.110090 [Google Scholar]
- X. Deng, K. Lu, Multi-level assessment for embodied carbon of buildings using multi-source industry foundation classes. J. Build. Eng. 72, (2023). https://doi:10.1016/j.jobe.2023.106705 [Google Scholar]
- F. Dolezal, I. Dornigg, M. Wurm, H. Figl, Overview and main findings for the austrian case study. Sustain. 13(14), (2021). https://doi:10.1016/j.jobe.2023.106705 doi: 10.3390/su13147584 [Google Scholar]
- S. Giaveno, A. Osello, D. Garufi, D. S. Razo, Embodied carbon and embodied energy scenarios in the built environment. Computational design meets epds. Sustain. 13(21), (2021). https://doi:10.1016/j.jobe.2023.106705 doi: 10.3390/su132111974 [Google Scholar]
- Q. Tushar, M. A. Bhuiyan, G. Zhang, T. Maqsood, An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development, Jour. Clean. Prod. 289, 125622 (2021). https://doi:10.1016/j.jclepro.2020.125622 [CrossRef] [Google Scholar]
- J. Yan, Q. Lu, J. Tang, L. Chen, J. Hong, T. Broyd, Digital Tools for Revealing and Reducing Carbon Footprint in Infrastructure, Building, and City Scopes. Build. 12(8), 1097 (2022). https://doi:10.3390/buildings12081097 [Google Scholar]
- B. D’Amico et al., Machine Learning for Sustainable Structures: A Call for Data. Struct. 19, 1–4 (2019). https://doi:10.1016/j.istruc.2018.11.013 [CrossRef] [Google Scholar]
- E. Sicignano, G. Di Ruocco, R. Melella, Mitigation strategies for reduction of embodied energy and carbon, in the construction systems of contemporary quality architecture. Sustain. 11(14), (2019). https://doi:10.3390/su11143806 [Google Scholar]
- M. Hossain, S. Ng, Strategies for enhancing the accuracy of evaluation and sustainability performance of building, Jour. Envi. Manag. 261, (2020). https://doi:10.1016/j.jenvman.2020.110230 [Google Scholar]
- S. Attia, Towards regenerative and positive impact architecture: A comparison of two net zero energy buildings, Sustain. Cities Soc. 26, 393–406 (2016). https://doi:10.1016/j.scs.2016.04.017 [CrossRef] [Google Scholar]
- M. Hossain, S. Ng, Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle, Resour. Conser. Recyc. 142, 10–23 (2019), https://doi:10.1016/j.resconrec.2018.11.010 [CrossRef] [Google Scholar]
- M. Morales-Beltran, P. Engür, Ö. A. Şişman, G. N. Aykar, Redesigning for Disassembly and Carbon Footprint Reduction: Shifting from Reinforced Concrete to Hybrid Timber-Steel Multi-Story Building. Sustain. 15(9), (2023) https://doi:10.3390/su15097273 [Google Scholar]
- D. Cottafava, M. Ritzen, Circularity indicator for residentials buildings: Addressing the gap between embodied impacts and design aspects. Resour. Conserv. Recycl., 164, (2021). https://doi:10.1016/j.resconrec.2020.105120 [CrossRef] [Google Scholar]
- T. Joensuu, R. Leino, J. Heinonen, A. Saari, Developing Buildings’ Life Cycle Assessment in Circular Economy-Comparing methods for assessing carbon footprint of reusable components. Sustain. Cities. Socie. 77, 103499 (2022) https://doi:10.1016/j.scs.2021.103499 [CrossRef] [Google Scholar]
- IEA, Global Energy and CO2 Status Report 2018. Energy Demand. (2018) [Google Scholar]
- P. Ghisellini, M. Ripa, S. Ulgiati, Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Jour. Clean. Prod. 178, 618–643 (2018). https://doi:10.1016/j.jclepro.2017.11.207 [Google Scholar]
- J. Dsilva, S. Zarmukhambetova, J. Locke, Assessment of building materials in the construction sector: A case study using life cycle assessment approach to achieve the circular economy. Hel, 9(10), (2023). https://doi:10.1016/j.heliyon.2023.e20404 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.