Open Access
Issue |
E3S Web Conf.
Volume 546, 2024
2024 2nd International Conference on Green Building (ICoGB 2024)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 6 | |
Section | Building Materials and Retrofit | |
DOI | https://doi.org/10.1051/e3sconf/202454603001 | |
Published online | 09 July 2024 |
- European Commission, In focus: Energy efficiency in buildings (2020). Available https://commission.europa.eu/news/focus-energy-efficiency-buildings-2020-02-17_en [Google Scholar]
- Directive 2010/31. Directive 2010/31/EU of the European parliament and of the council of 19 may 2010 on the energy performance of buildings (recast). L153/113-L153/135. [Google Scholar]
- C. Piccardo, A. Dodoo, L. Gustavsson, U. Y. A. Tettey, Retrofitting with different building materials: Life-cycle primary energy implications. Energy. 192, 116648 (2020). https://doi.org/10.1016/j.energy.2019.116648 [CrossRef] [Google Scholar]
- M. Röck et al., Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Appl Energy. 258, 114107 (2020). https://doi.org/10.1016/j.apenergy.2019.114107 [Google Scholar]
- A. Kylili, M. Ilic, P. A. Fokaides, Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone. Resour Conserv Recycl. 116, 169–177 (2017). https://doi.org/10.1016/J.RESCONREC.2016.10.010 [CrossRef] [Google Scholar]
- A. Azzouz, M. Borchers, J. Moreira, A. Mavrogianni, Life cycle assessment of energy conservation measures during early stage office building design: A case study in London, UK’. Energy Build. 139, 547–568 (2017). https://doi.org/10.1016/J.ENBUILD.2016.12.089 [CrossRef] [Google Scholar]
- M. Asif, T. Muneer, R. Kelley, Life cycle assessment: A case study of a dwelling home in Scotland. Build Environ. 42, 1391–1394 (2007). https://doi.org/10.1016/J.BUILDENV.2005.11.023 [Google Scholar]
- C. Breton, P. Blanchet, B. Amor, R. Beauregard, W. S. Chang, Assessing the climate change impacts of biogenic carbon in buildings: A critical review of two main dynamic approaches. Sustainability. 10, 6 (2018). https://doi.org/10.3390/su10062020 [Google Scholar]
- C. Thormark, The effect of material choice on the total energy need and recycling potential of a building. Build Environ. 41, 1019–1026 (2006). https://doi.org/10.1016/j.buildenv.2005.04.026 [Google Scholar]
- O. B. Carcassi, P. Minotti, G. Habert, I. Paoletti, S. Claude, F. Pittau, Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation. Sustainability. 14, 3 (2022). https://doi.org/10.3390/su14031384 [CrossRef] [Google Scholar]
- F. Di Gruttola, D. Borello, Analysis of the eu secondary biomass availability and conversion processes to produce advanced biofuels: Use of existing databases for assessing a metric evaluation for the 2025 perspective. Sustainability. 13, 7882 (2021). https://doi.org/10.3390/su13147882 [CrossRef] [Google Scholar]
- J. Torén, et al., Biomass Energy Europe – Executive Summary, Evaluation and Recommendations (2011). https://doi.org/10.13140/2.1.2968.1443 [Google Scholar]
- W. Sun, M. Tajvidi, C. Howell, C. G. Hunt, Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties. Compos Part A Appl Sci Manuf. 161, 107125 (2022). https://doi.org/10.1016/j.compositesa.2022.107125 [CrossRef] [Google Scholar]
- C. H. Koh, F. Gauvin, K. Schollbach, H. J. H. Brouwers, Investigation of material characteristics and hygrothermal performances of different bio-based insulation composites. Constr Build Mater. 346, 128440 (2022). https://doi.org/10.1016/J.CONBUILDMAT.2022.128440 [CrossRef] [Google Scholar]
- P. S. de Carvalho, M. D. Nora, L. C. da Rosa, Development of an acoustic absorbing material based on sunflower residue following the cleaner production techniques. J Clean Prod. 270, 122478 (2020). https://doi.org/10.1016/j.jclepro.2020.122478 [CrossRef] [Google Scholar]
- P. Cerny, et al., Complex Study of the Composite Building Material Based on Flax Straw Organic Waste: Hygrothermal and Physicochemical Properties. Waste Biomass Valori. 15, 2231–2247 (2023). https://doi.org/10.1007/s12649-023-02273-7 [Google Scholar]
- P. Llorach-Massana, et al., Environmental assessment of a new building envelope material derived from urban agriculture wastes: the case of the tomato plants stems. Int J Life Cycle Ass. 28, 813–827 (2023). https://doi.org/10.1007/s11367-023-02152-2 [CrossRef] [Google Scholar]
- K. Fabbri, L. Tronchin, F. Barbieri, Coconut fibre insulators: The hygrothermal behaviour in the case of green roofs. Constr Build Mater. 266, 121026 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121026 [CrossRef] [Google Scholar]
- S. Awad, Y. Zhou, E. Katsou, Y. Li, M. Fan, A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Biocomposites. Waste Biomass Valori. 12, 2853–2887 (2021). https://doi.org/10.1007/s12649-020-01105-2 [CrossRef] [Google Scholar]
- A. Araujo, N. Da Silva, T. Sá, L. Caldas, R. Toledo Filho, Potential of Earth-Based Bamboo Bio-Concrete in the Search for Circular and Net-Zero Carbon Solutions to Construction Industry. IOP Conf Ser Earth Environ Sci. 1122, 012043 (2022). https://doi.org/10.1088/1755-1315/1122/1/012043 [CrossRef] [Google Scholar]
- M. Viel, F. Collet, C. Lanos, Chemical and multiphysical characterization of agro-resources’ by-product as a possible raw building material. Ind Crops Prod. 120, 214–237 (2018). https://doi.org/10.1016/j.indcrop.2018.04.025 [CrossRef] [Google Scholar]
- F. Asdrubali, F. D’Alessandro, S. Schiavoni, A review of unconventional sustainable building insulation materials. Sustain Mater Techno. 4, 1–17 (2015). https://doi.org/10.1016/J.SUSMAT.2015.05.002 [Google Scholar]
- L. F. Liu et al., The development history and prospects of biomass-based insulation materials for buildings. Renew Sustain Energy Rev. 69, 912–932 (2017). https://doi.org/10.1016/J.RSER.2016.11.140 [CrossRef] [Google Scholar]
- W. Yang, Y. Feng, H. He, Z. Yang, Environmentally-Friendly Extraction of Cellulose Nanofibers from Steam-Explosion Pretreated Sugar Beet Pulp. Materials. 11, 1160 (2018). https://doi.org/10.3390/MA11071160 [CrossRef] [PubMed] [Google Scholar]
- H. Li, W. Yang, H. Li, W. Yang, Electrospinning Technology in Non-Woven Fabric Manufacturing. Non-woven Fabrics. (2016). https://doi.org/10.5772/62200 [Google Scholar]
- V. Shanmugam et al., Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Composites Part C: Open Access. 5, 100138 (2021). https://doi.org/10.1016/J.JCOMC.2021.100138 [CrossRef] [Google Scholar]
- S. Palanisamy, T. M. Murugesan, M. Palaniappan, C. Santulli, N. Ayrilmis, A. Alavudeen, Selection and processing of natural fibers and nanocellulose for biocomposite applications: A brief review. Bioresources. 19, 1789–1813 (2024). https://doi.org/10.15376/biores.19.1.Palanisamy [Google Scholar]
- S. Lavania, J. Mehta, P. Bhardwaj, A. Tripathi, N. Gupta, P. Gupta, Biocomposites: Prospects and Manifold Applications for Human and Environmental Sustainability. ECS J Solid State Sc. 12, 037002 (2023). https://doi.org/10.1149/2162-8777/ACBE17 [Google Scholar]
- M. Akter, M. H. Uddin, H. R. Anik, Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Polymer Bulletin. 81, 1–85 (2023). https://doi.org/10.1007/s00289-023-04733-5 [Google Scholar]
- M. Di Luigi, D. Petit, A. Sarkar, Z. Guo, C. Zhou, S. Ren, Tailoring biogenic straw insulation from additive manufacturing. Appl Mater Today. 32, 101851 (2023). https://doi.org/10.1016/J.APMT.2023.101851 [Google Scholar]
- R. Stefania Chiujdea, P. Nicholas, Design and 3D Printing Methodologies for Cellulosebased Composite Materials, in Proceedings of the eCAADe conference. 1, 547–554 (2020) [CrossRef] [Google Scholar]
- J. G. Fernandez, S. Dritsas, The Biomaterial Age: The Transition Toward a More Sustainable Society will Be Determined by Advances in Controlling Biological Processes. Matter. 2, 1352–1355 (2020). https://doi.org/10.1016/J.MATT.2020.04.009 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.