Open Access
Issue
E3S Web Conf.
Volume 546, 2024
2024 2nd International Conference on Green Building (ICoGB 2024)
Article Number 03008
Number of page(s) 11
Section Building Materials and Retrofit
DOI https://doi.org/10.1051/e3sconf/202454603008
Published online 09 July 2024
  1. J. Assunção, K Chadha L. Vasey, C. Brumaud, and G. Habert (2023). Can digital fabrication meet low-carbon materials? A closer look at the environmental impact of 3D printing with earth. ETH Zurich. https://doi.org/10.3929/ETHZ-B-000640421 [Google Scholar]
  2. K. Kuzmenko, A. Feraille, O. Baverel, N. Roussel. Environmental Impacts of 6-Axes Robotic Arm for 3D Concrete Printing, in: Bos, F.P., Lucas, S.S., Wolfs, R.J.M., Salet, T.A.M. (Eds.), Second RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries. Springer International Publishing, Cham, pp. 1023–1030. https://doi.org/10.1007/978-3-030-49916-7_99 (2020). [CrossRef] [Google Scholar]
  3. V. Voney, P. Odaglia, C. Brumaud, B. Dillenburger, G. Habert. From casting to 3D printing geopolymers: A proof of concept. Cem. Concr. Res. 143. https://doi.org/10.1016/j.cemconres.2021.106374 (2021). [CrossRef] [Google Scholar]
  4. F. Boscaro, E. Quadranti, T. Wangler, S. Mantellato, L. Reiter, R.J. Flatt. Eco-Friendly, Set-on-Demand Digital Concrete. 3D Print. Addit. Manuf. 9, 3–11. https://doi.org/10.1089/3dp.2020.0350 (2022). [Google Scholar]
  5. A. Perrot, D. Rangeard, E. Courteille. 3D printing of earth-based materials: Processing aspects. Constr. Build. Mater. 172, 670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017 (2018). [CrossRef] [Google Scholar]
  6. M.R.M. Saade, A. Yahia, B. Amor. How has LCA been applied to 3D printing, Asystematic literature review and recommendations for future studies. J. Clean. Prod. 244, 118803. https://doi.org/10.1016/j.jclepro.2019.118803 (2020). [CrossRef] [Google Scholar]
  7. A. Perrot, D. Rangeard, F. Menasria, S. Guihéneuf. Strategies for optimizing the mechanical strengths of raw earth-based mortars. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2018.02.055 (2018). [Google Scholar]
  8. H. Alhumayani, M. Gomaa, V. Soebarto, W. Jabi. Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete. J. Clean. Prod. 270, 122463. https://doi.org/10.1016/j.jclepro.2020.122463 (2020). [CrossRef] [Google Scholar]
  9. M. Gomaa, S. Schade, D.W. Bao, Y.M. Xie. Automation in rammed earth construction for industry 4.0: Precedent work, current progress, and future prospect. J. Clean. Prod. 398, 136569. https://doi.org/10.1016/j.jclepro.2023.136569 (2023). [CrossRef] [Google Scholar]
  10. A. Ofer, B. Arnon, P. Larianovsky, A. Sprecher, From soil to printed structures: a systematic approach to designing clay-based materials for 3D printing in construction and architecture, Constr. Build. Mater. 408 (December) 133783, https://doi.org/10.1016/j.conbuildmat.2023.133783 (2023). [CrossRef] [Google Scholar]
  11. IAAC and WASP: new 3D printing strategies towards the realisation of load-bearing earthen structures, IAAC (Blog) May 29, https://iaac.net/iaac-wasp-new-3d-printingstrategies-towards-realisation-load-bearingearthen-structures (2019). [Google Scholar]
  12. G. Giuffrida, R. Caponetto and M. Cuomo (2019). An overview on contemporary rammed earth buildings: technological advances in production, construction and material characterization. In IOP Conference Series: Earth and Environmental Science (Vol. 296, Issue 1, p. 012018). IOP Publishing. https://doi.org/10.1088/17551315/296/1/012018 [CrossRef] [Google Scholar]
  13. M. Röck, M. R. M. Saade, M. Balouktsi, F. N. Rasmussen, H. Birgisdottir, R. Frischknecht, G. Habert, T. Lützkendorf and A. Passer (2020). Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. In Applied Energy (Vol. 258, p. 114107). Elsevier BV. https://doi.org/10.1016/j.apenergy.2019.114107 [CrossRef] [Google Scholar]
  14. M. Bechthold, Z. Seibold and S. Mhatre (2022). Post-tensioned ceramic structures: design, analysis and prototyping. In Architecture, Structures and Construction (Vol. 2, Issue 1, pp. 165–182). Springer Science and Business Media LLC. https://doi.org/10.1007/s44150-022-00025-0 [CrossRef] [Google Scholar]
  15. B. Khoshnevis (2004). Automated construction by contour crafting—related robotics and information technologies. In Automation in Construction (Vol. 13, Issue 1, pp. 5–19). Elsevier BV. https://doi.org/10.1016/j.autcon.2003.08.012 [CrossRef] [Google Scholar]
  16. M. Moretti (2023). WASP in the Edge of 3D Printing. In 3D Printing for Construction with Alternative Materials (pp. 57–65). Springer International Publishing. https://doi.org/10.1007/978-3-031-09319-7_3 [CrossRef] [Google Scholar]
  17. V. Revilla-Cuesta, L. Evangelista, J. de Brito, M. Skaf and J. M. Manso (2022). Shrinkage prediction of recycled aggregate structural concrete with alternative binders through partial correction coefficients. In Cement and Concrete Composites (Vol. 129, p. 104506). Elsevier BV. https://doi.org/10.1016/j.cemconcomp.2022.104506 [CrossRef] [Google Scholar]
  18. M. Gomaa, W. Jabi, A. Veliz Reyes and V. Soebarto. (2021). 3D printing system for earth-based construction: Case study of cob. In Automation in Construction (Vol. 124, p. 103577). Elsevier BV. https://doi.org/10.1016/j.autcon.2021.103577 [CrossRef] [Google Scholar]
  19. E. Ferretti, M. Moretti, A. Chiusoli, L. Naldoni, F. De Fabritiis and M. Visonà (2022). Mechanical Properties of a 3D-Printed Wall Segment Made with an Earthen Mixture. In Materials (Vol. 15, Issue 2, p. 438). MDPI AG. https://doi.org/10.3390/ma15020438 [CrossRef] [Google Scholar]
  20. M. C. Jiménez Delgado and I. C. Guerrero (2007). The selection of soils for unstabilised earth building: A normative review. In Construction and Building Materials (Vol. 21, Issue 2, pp. 237–251). Elsevier BV. https://doi.org/10.1016/j.conbuildmat.2005.08.006 [CrossRef] [Google Scholar]
  21. A. Koutous and E. Hilali (2021). Reinforcing rammed earth with plant fibers: A case study. In Case Studies in Construction Materials (Vol. 14, p. e00514). Elsevier BV. https://doi.org/10.1016/j.cscm.2021.e00514 [CrossRef] [Google Scholar]
  22. Compressed Earth Blocks Standards (CDI - CRATerre-EAG, 1998, 144 p.), n.d. Accessed October 10, https://www.nzdl.org/cgi-bin/library?e=d-0000000—off-0cdl–00-0——010-0—0—0direct-10—4—————0–0l–11-en-50—20about—00-0-1-00-0-0-11-1-0utfZz-8-10&cl=CL4.30&d=HASH01979938ef89e979ddfb736b&gt=2 (2023). [Google Scholar]
  23. C. Roux, K. Kuzmenko, N. Roussel, R. Mesnil and A. Feraille. Life cycle assessment of concrete 3D printing process. Int. J. Life Cycle Assess. 28, 1–15. https://doi.org/10.1007/s11367-022-02111-3. [Google Scholar]
  24. D. Andreau and L. Delboy, World Heritage Inventory of Earthen Architecture, CRA Terre-ENSAG, France, (2012). 〈https://unesdoc.unesco.org/ark:/48223/pf0000217020 (2023). [Google Scholar]
  25. L. A. Wolfskill, et. al, Handbook for Building Homes of Earth, Washington D.C.: Department of Housing and Urban Development, Division of International Affairs (1969). [Google Scholar]
  26. A. Curth. 3D Printed Earth Formwork for Reinforced Concrete Construction. US Patent Office 63/507, 725, filed June 12, (2023). [Google Scholar]
  27. P. Estève, C. Beckett, R. Pedreschi, F. Bosche, J. C. Morel, R. Charef and G. Habert (2022). Developing an integrated BIM/LCA framework to assess the sustainability of using earthen architecture. In IOP Conference Series: Earth and Environmental Science (Vol. 1078, Issue 1, p. 012100). IOP Publishing. https://doi.org/10.1088/1755-1315/1078/1/012100 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.