Open Access
Issue
E3S Web of Conf.
Volume 547, 2024
International Conference on Sustainable Green Energy Technologies (ICSGET 2024)
Article Number 01002
Number of page(s) 8
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202454701002
Published online 09 July 2024
  1. T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques,” in IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4876-4891, July 2016, doi: 10.1109/TPEL.2015.2478859. [Google Scholar]
  2. Md Alamgir Hossain, Hemanshu Roy Pota, Md Jahangir Hossain, Frede Blaabjerg, Evolution of microgrids with converter-interfaced generations: Challenges and opportunities, International Journal of Electrical Power & Energy Systems, Volume 109, 2019, Pages 160-186, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2019.01.038. [CrossRef] [Google Scholar]
  3. Pires, V.F.; Pires, A.; Cordeiro, A. DC Microgrids: Benefits, Architectures, Perspectives and Challenges. Energies 2023, 16,1217. https://doi.org/10.3390/en16031217. [CrossRef] [Google Scholar]
  4. S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2019.2904588. [Google Scholar]
  5. Lin, F., Guan, Y., & Zhang, Y. (2021). A Review on AI and Machine Learning Techniques for DC Microgrid Applications. Energies, 14(17), 5437. https://doi.org/10.3390/en14175437 [CrossRef] [Google Scholar]
  6. Anvari-Moghaddam, A., Abbaspour, M., & Fotuhi-Firuzabad, M. (2021). Artificial Intelligence Applications in DC Microgrids: A Comprehensive Review. Energies, 14(11), 3003. https://doi.org/10.3390/en14113003. [CrossRef] [Google Scholar]
  7. Jiang, J., Xu, Y., & Wang, J. (2020). AI and Machine Learning in Smart Grids: A Comprehensive Review. IEEE Access, 8, 165481–165503. https://doi.org/10.1109/access.2020.3029791. [Google Scholar]
  8. Kannan, Umapathy & Kumar, T. & Poojitha, G. & Sri, D. & Pavaneeswar, Ch & Amannah, Constance. (2023). Machine Learning Applications for the Smart Grid. 10.1007/978-3-031-46092-0_15. [Google Scholar]
  9. In The Morgan Kaufmann Series in Data Management Systems, Data Mining (Third Edition), Morgan Kaufmann, 2012, Pages xxi-xxii, ISBN 9780123814791, https://doi.org/10.1016/B978-0-12-381479-1.00023-X. [Google Scholar]
  10. Kennedy, J. (2006). Swarm Intelligence. In: Zomaya, A.Y. (eds) Handbook of Nature-Inspired and Innovative Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27705-6_6. [Google Scholar]
  11. Jang, Jyh-Shing & Sun, Chuen-Tsai & Mizutani, Eiji. (1997). Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review]. Automatic Control, IEEE Transactions on. 42. 1482 - 1484. 10.1109/TAC.1997.633847. [Google Scholar]
  12. Lee, Edward & Seshia, Sanjit. (2011). Introduction to Embedded Systems - A Cyber-Physical Systems Approach. [Google Scholar]
  13. Nabiullin, D.I. & Balobanov, Ruslan. (2019). Prediction of the electrical load of the power system using neural networks. E3S Web of Conferences. 124. 05026. 10.1051/e3sconf/201912405026. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Bansal, Ramesh & Pandey, J.. (2005). Load forecasting using artificial intelligence techniques: A literature survey. International Journal of Computer Applications in Technology. 22. 10.1504/IJCAT.2005.006942. [Google Scholar]
  15. B. E. Türkay and D. Demren, “Electrical load forecasting using support vector machines,” 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2011, pp. I-49-I-53. [Google Scholar]
  16. S. G. N and G. S. Sheshadri, “Electrical Load Forecasting Using Time Series Analysis,” 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijiyapur, India, 2020, pp. 1-6, doi: 10.1109/B-HTC50970.2020.9297986. [Google Scholar]
  17. A. Ali and J. E. A., “Deep Learning Networks for Short Term Load Forecasting,” 2023 International Conference on Control, Communication and Computing (ICCC), Thiruvananthapuram, India, 2023, pp. 1-5, doi: 10.1109/ICCC57789.2023.10165216. [Google Scholar]
  18. N. Ahmad, Y. Ghadi, M. Adnan and M. Ali, “Load Forecasting Techniques for Power System: Research Challenges and Survey,” in IEEE Access, vol. 10, pp. 71054-71090, 2022, doi: 10.1109/ACCESS.2022.3187839. [Google Scholar]
  19. K. S. Swarup and H. S. Chandrasekharaiah, “Power system fault diagnosis using artificial neural networks,” ACE '90. Proceedings of [XVI Annual Convention and Exhibition of the IEEE In India], Bangalore, India, 1990, pp. 81-85, doi: 10.1109/ACE.1990.762643. [Google Scholar]
  20. Nguyen, NT., Lee, HH. (2008). An Application of Support Vector Machines for Induction Motor Fault Diagnosis with Using Genetic Algorithm. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science (), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_24. [Google Scholar]
  21. G. Demidova, A. Rassõlkin, T. Vaimann, A. Kallaste, J. Zakis and A. Suzdalenko, “An Overview of Fuzzy Logic Approaches for Fault Diagnosis in Energy Conversion Devices,” 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), Moscow, Russia, 2021, pp. 1-7, doi: 10.1109/IWED52055.2021.9376389. [Google Scholar]
  22. K. S. Swarup and H. S. Chandrasekharaiah, “Power system fault diagnosis using artificial neural networks,” ACE '90. Proceedings of [XVI Annual Convention and Exhibition of the IEEE In India], Bangalore, India, 1990, pp. 81-85, doi: 10.1109/ACE.1990.762643. [Google Scholar]
  23. Gonzalez-Jimenez, D.; del-Olmo, J.; Poza, J.; Garramiola, F.; Sarasola, I. Machine Learning-Based Fault Detection and Diagnosis of Faulty Power Connections of Induction Machines. Energies 2021, 14, 4886. https://doi.org/10.3390/en14164886. [CrossRef] [Google Scholar]
  24. Kim, I.; Kim, B.; Sidorov, D. Machine Learning for Energy Systems Optimization. Energies 2022, 15, 4116. https://doi.org/10.3390/en15114116. [CrossRef] [Google Scholar]
  25. Almughram, O.; Abdullah ben Slama, S.; Zafar, B.A. A Reinforcement Learning Approach for Integrating an Intelligent Home Energy Management System with a Vehicle-to-Home Unit. Appl. Sci. 2023, 13, 5539. https://doi.org/10.3390/app13095539. [Google Scholar]
  26. Vivas, F.J.; Segura, F.; Andújar, J.M.; Palacio, A.; Saenz, J.L.; Isorna, F.; López, E. Multi-Objective Fuzzy Logic-Based Energy Management System for Microgrids with Battery and Hydrogen Energy Storage System. Electronics 2020, 9, 1074. https://doi.org/10.3390/electronics9071074. [CrossRef] [Google Scholar]
  27. Dehghani, M.; Mardaneh, M.; Malik, O.P.; Guerrero, J.M.; Sotelo, C.; Sotelo, D.; Nazari-Heris, M.; Al-Haddad, K.; Ramirez-Mendoza, R.A. Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers. Sustainability 2020, 12, 10053. https://doi.org/10.3390/su122310053. [Google Scholar]
  28. M. Y. Ali, F. Khan and V. K. Sood, “Energy Management System of a Microgrid using Particle Swarm Optimization and Wireless Communication System,” 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 2018, pp. 1-7, doi: 10.1109/EPEC.2018.8598416. [Google Scholar]
  29. Zahraee, Seyed & khalaji assadi, Morteza & Rahman, Saidur. (2016). Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renewable and Sustainable Energy Reviews. 66. 617–630. 10.1016/j.rser.2016.08.028. [CrossRef] [Google Scholar]
  30. A. A. Ayrancı and H. İlhan, “Decentral Smart Grid Control System Stability Analysis Using Machine Learning,” 2022 2nd International Conference on Computing and Machine Intelligence (ICMI), Istanbul, Turkey, 2022, pp. 1-5, doi: 10.1109/ICMI55296.2022.9873655. [Google Scholar]
  31. Li, Q.; Lin, T.; Yu, Q.; Du, H.; Li, J.; Fu, X. Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control. Energies 2023, 16, 4143, https://doi.org/10.3390/en16104143. [CrossRef] [Google Scholar]
  32. Amjad Alsirhani, Mohammed Mujib Alshahrani, Abdulwahab Abukwaik, Ahmed I. Taloba, Rasha M. Abd El-Aziz, Mostafa Salem, A novel approach to predicting the stability of the smart grid utilizing MLP-ELM technique, Alexandria Engineering Journal, Volume 74, 2023, Pages 495-508, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2023.05.063. [Google Scholar]
  33. Dudek, G.; Piotrowski, P.; Baczyński, D. Intelligent Forecasting and Optimization in Electrical Power Systems: Advances in Models and Applications. Energies 2023, 16, 3024. https://doi.org/10.3390/en16073024. [CrossRef] [Google Scholar]
  34. J. Xie, I. Alvarez-Fernandez and W. Sun, “A Review of Machine Learning Applications in Power System Resilience,” 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9282137. [Google Scholar]
  35. D. Cao et al., “Reinforcement Learning and Its Applications in Modern Power and Energy Systems: A Review,” in Journal of Modern Power Systems and Clean Energy, vol. 8, no. 6, pp. 1029-1042, November 2020, doi: 10.35833/MPCE.2020.000552. [CrossRef] [Google Scholar]
  36. Talal Alazemi, Mohamed Darwish, Mohammed Radi, Renewable energy sources integration via machine learning modelling: A systematic literature review, Heliyon,Volume 10, Issue 4, 2024, e26088, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e26088. [CrossRef] [Google Scholar]
  37. Nikolaos G. Paterakis, Chapter 3 - Optimal Procurement of Contingency and Load Following Reserves by Demand Side Resources Under Wind-Power Generation Uncertainty, Editor(s): Ozan Erdinç, Optimization in Renewable Energy Systems, Butterworth-Heinemann, 2017, Pages 75-116, ISBN 9780081010419, https://doi.org/10.1016/B978-0-08-101041-9.00003-X. [Google Scholar]
  38. Ting Dai, Chapter 4 - Optimum Bidding of Renewable Energy System Owners in Electricity Markets, Editor(s): Ozan Erdinç, Optimization in Renewable Energy Systems, Butterworth- Heinemann, 2017, Pages 117-158, ISBN 9780081010419, https://doi.org/10.1016/B978-0-08-101041-9.00004-1. [Google Scholar]
  39. Ebnou Abdem, S.A.; Chenal, J.; Diop, E.B.; Azmi, R.; Adraoui, M.; Tekouabou Koumetio, C.S. Using Logistic Regression to Predict Access to Essential Services: Electricity and Internet in Nouakchott, Mauritania. Sustainability 2023, 15, 16197. https://doi.org/10.3390/su152316197. [CrossRef] [Google Scholar]
  40. Biresselioglu, M.E.; Demir, M.H. Constructing a Decision Tree for Energy Policy Domain Based on Real-Life Data. Energies 2022, 15, 2420. https://doi.org/10.3390/en15072420. [CrossRef] [Google Scholar]
  41. Tarek Berghout, Mohamed Benbouzid, S.M. Muyeen, Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects, International Journal of Critical Infrastructure Protection, Volume 38, 2022, 100547, ISSN 1874-5482, https://doi.org/10.1016/j.ijcip.2022.100547. [CrossRef] [Google Scholar]
  42. Almalaq, A.; Albadran, S.; Mohamed, M.A. Deep Machine Learning Model-Based Cyber-Attacks Detection in Smart Power Systems. Mathematics 2022, 10, 2574. https://doi.org/10.3390/math10152574. [CrossRef] [Google Scholar]
  43. Frank, Edwin & Oluwaseyi, Joseph & Olaoye, Godwin. (2024). Introduction to natural language processing (NLP) in cybersecurity. [Google Scholar]
  44. Eirini Anthi, Lowri Williams, Matilda Rhode, Pete Burnap, Adam Wedgbury, Adversarial attacks on machine learning cybersecurity defences in Industrial Control Systems, Journal of Information Security and Applications, Volume 58, 2021, 102717, ISSN 2214-2126, https://doi.org/10.1016/j.jisa.2020.102717. [CrossRef] [Google Scholar]
  45. Kyuchan Park, Wonpoong Lee, Dongjun Won, Optimal Energy Management of DC Microgrid System using Dynamic Programming, IFAC-PapersOnLine, Volume 52, Issue 4, 2019, Pages 194-199, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2019.08.178. [CrossRef] [Google Scholar]
  46. Talaat, M., Elkholy, M.H., Alblawi, A. et al. Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artif Intell Rev 56, 10557–10611 (2023). https://doi.org/10.1007/s10462-023-10410-w [Google Scholar]
  47. L. Ciabattoni, F. Ferracuti, M. Grisostomi, G. Ippoliti, and S. Longhi, “Fuzzy logic based economical analysis of photovoltaic energy management,” Neurocomputing, vol. 170, pp. 296 – 305, 2015. [CrossRef] [Google Scholar]
  48. S. Leonori, E. D. Santis, A. Rizzi, and F. M. F. Mascioli, “Optimization of a microgrid energy management system based on a fuzzy logic controller,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Oct 2016, pp. 6615–6620 [Google Scholar]
  49. Leonori, Stefano & Paschero, Maurizio & Rizzi, Antonello & Frattale Mascioli, Fabio Massimo. (2017). An optimized microgrid energy management system based on FIS-MO-GA paradigm. 1-6. 10.1109/FUZZ-IEEE.2017.8015438. [Google Scholar]
  50. Omitaomu, O.A.; Niu, H. Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities 2021, 4, 548-568. https://doi.org/10.3390/smartcities4020029 [CrossRef] [Google Scholar]
  51. Aguiar-Pérez JM, Pérez-Juárez MÁ. An Insight of Deep Learning Based Demand Forecasting in Smart Grids. Sensors (Basel). 2023 Jan 28;23(3):1467. doi: 10.3390/s23031467. PMID: 36772509; PMCID: PMC9921606. [CrossRef] [PubMed] [Google Scholar]
  52. Raza, Muhammad Qamar & Khosravi, Abbas. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews. 50. 1352-1372. 10.1016/j.rser.2015.04.065. [Google Scholar]
  53. Ho K-L, Hsu Y-Y, Yang C-C. Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Trans Power Syst 1992;7:141–9. [CrossRef] [Google Scholar]
  54. A. N. F. Ali, M. F. Sulaima, I. A. W. A. Razak, A. F. A. Kadir and H. Mokhlis, “Artificial Intelligence Application in Demand Response: Advantages, Issues, Status, and Challenges,” in IEEE Access, vol. 11, pp. 16907-16922, 2023, doi: 10.1109/ACCESS.2023.3237737. [CrossRef] [Google Scholar]
  55. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018. [Google Scholar]
  56. M. Dorigo and G. D. Caro, “Ant colony optimization: A new metaheuristic,” in Proc. Congr. Evol. Comput., Washington, DC, USA, 1999, pp. 1470–1477 [Google Scholar]
  57. M. A. Khan, A. M. Saleh, M. Waseem and I. A. Sajjad, “Artificial Intelligence Enabled Demand Response: Prospects and Challenges in Smart Grid Environment,” in IEEE Access, vol. 11, pp. 1477-1505, 2023, doi: 10.1109/ACCESS.2022.3231444. [CrossRef] [Google Scholar]
  58. Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [CrossRef] [Google Scholar]
  59. Islam, F.R.; Mamun, K.A. Possibilities and Challenges of Implementing Renewable Energy in the Light of PESTLE & SWOT Analyses for Island Countries. In Smart Energy Grid Design for Island Countries: Challenges and Opportunities; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–19. [Google Scholar]
  60. M.Y. Arafat, M.J. Hossain, Md Morshed Alam, achine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects, Renewable and Sustainable Energy Reviews, Volume 190, Part A, 2024, 114088, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2023.114088. [CrossRef] [Google Scholar]
  61. Kanagarathinam, K.; Aruna, S.K.; Ravivarman, S.; Safran, M.; Alfarhood, S.; Alrajhi, W. Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network. Sustainability 2023, 15, 13424. https://doi.org/10.3390/su151813424 [CrossRef] [Google Scholar]
  62. Karthick, K.; Ravivarman, S.; Priyanka, R. Optimizing Electric Vehicle Battery Life: A Machine Learning Approach for Sustainable Transportation. World Electr. Veh. J. 2024, 15, 60. https://doi.org/10.3390/wevj15020060 [CrossRef] [Google Scholar]
  63. Saravanan, S. M., Rajaiah, J., Shanmugasundaram, R., & Ponnusamy, J. (2023). Sensor Failure Identification and Segregation Using Wavelet Performance Analysis for WSN Based Status Surveillance System Of A Wind Turbine. International Journal of Industrial Engineering: Theory, Applications and Practice, 30(3), pp. 781-796. https://doi.org/10.23055/ijietap.2023.30.3.8917 [Google Scholar]
  64. Majeed, Muhammad & Phichisawat, Sotdhipong & Asghar, Furqan & Hussan, Umair. (2023). Optimal Energy Management System for Grid-Tied Microgrid: An Improved Adaptive Genetic Algorithm. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3326505. [Google Scholar]
  65. Kerboua, Abdelfettah & Boukli Hacene, Fouad & Mourad, Khaldoon. (2020). Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling. International Journal of Energy Economics and Policy. 10. 71-80. 10.32479/ijeep.8568. [Google Scholar]
  66. Kreishan, M.Z.; Zobaa, A.F. Mixed-Integer Distributed Ant Colony Optimization of Dump Load Allocation with Improved Islanded Microgrid Load Flow. Energies 2023, 16, 213. https://doi.org/10.3390/en16010213. [Google Scholar]
  67. Irnawan, R.; Rizqi, A.A.A.; Yasirroni, M.; Putranto, L.M.; Ali, H.R.; Firmansyah, E.; Sarjiya. Model-Free Approach to DC Microgrid Optimal Operation under System Uncertainty Based on Reinforcement Learning. Energies 2023, 16, 5369. https://doi.org/10.3390/en16145369. [CrossRef] [Google Scholar]
  68. R. N. Bhargavi, M. L. Swarupa and M. Rajitha, “Power Transformer Protection using ANN and Wavelet Transforms,” 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2021, pp. 161-166, doi: 10.1109/ICACCS51430.2021.9441828. [Google Scholar]
  69. Swarupa, Lakshmi & Latha, Kamasamud & Obulesu, Dakka. (2023). Simulation of grid connected PV system with PI, fuzzy-GA based controllers for power flow control. International Journal of Power Electronics and Drive Systems (IJPEDS). 14. 1702. 10.11591/ijpeds.v14.i3.pp1702-1710. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.