Open Access
Issue
E3S Web of Conf.
Volume 547, 2024
International Conference on Sustainable Green Energy Technologies (ICSGET 2024)
Article Number 01023
Number of page(s) 8
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202454701023
Published online 09 July 2024
  1. W. Zhou, C. Lou, Z. Li, L. Lu and H. Yang, “Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems”, Applied Energy, vol. 87, no. 2, pp. 380-389, (2010). [Google Scholar]
  2. I. Syed, “Near-optimal standalone hybrid PV/WE system sizing method”, Solar Energy, vol. 157, pp. 727-734, (2017). [CrossRef] [Google Scholar]
  3. R. Maouedj, A. Mammeri, M. Draou and B. Benyoucef, “Techno-economic Analysis of a Standalone Hybrid Photovoltaic-wind System. Application in Electrification of a House in Adrar Region”, Energy Procedia, vol. 74, pp. 1192-1204, (2015). [CrossRef] [Google Scholar]
  4. M. Ismail, M. Moghavvemi, T. Mahlia, K. Muttaqi and S. Moghavvemi, “Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis”, Renewable and Sustainable Energy Reviews, vol. 42, pp. 726-734, (2015). [CrossRef] [Google Scholar]
  5. S. Aissou, D. Rekioua, N. Mezzai, T. Rekioua and S. Bacha, “Modeling and control of hybrid photovoltaic wind power system with battery storage”, Energy Conversion and Management, vol. 89, pp. 615-625, (2015). [CrossRef] [Google Scholar]
  6. T. Alnejaili, S. Drid, D. Mehdi, L. Chrifi-Alaoui, R. Belarbi and A. Hamdouni, “Dynamic control and advanced load management of a stand-alone hybrid renewable power system for remote housing”, Energy Conversion and Management, vol. 105, pp. 377-392, (2015). [CrossRef] [Google Scholar]
  7. T. Ma, H. Yang, L. Lu and J. Peng, “Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization”, Applied Energy, vol. 137, pp. 649-659, (2015). [Google Scholar]
  8. R. Gupta, R. Kumar and A. Bansal, “BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting”, Renewable and Sustainable Energy Reviews, vol. 41, pp. 1366-1375, (2015). [CrossRef] [Google Scholar]
  9. B. Bilal, V. Sambou, P. Ndiaye, C. Kébé and M. Ndongo, “Study of the Influence of Load Profile Variation on the Optimal Sizing of a Standalone Hybrid PV/Wind/Battery/Diesel System”, Energy Procedia, vol. 36, pp. 1265-1275, (2013). [CrossRef] [Google Scholar]
  10. B. Bilal, V. Sambou, C. Kébé, P. Ndiaye and M. Ndongo, “Methodology to Size an Optimal Stand-Alone PV/wind/diesel/battery System Minimizing the Levelized cost of Energy and the CO2 Emissions”, Energy Procedia, vol. 14, pp. 1636-1647, (2012). [CrossRef] [Google Scholar]
  11. M. Dali, J. Belhadj and X. Roboam, “Hybrid solar– wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation”, Energy, vol. 35, no. 6, pp. 2587-2595, (2010). [CrossRef] [Google Scholar]
  12. T. Khatib, I. Ibrahim and A. Mohamed, “A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system”, Energy Conversion and Management, vol. 120, pp. 430-448, (2016). [CrossRef] [Google Scholar]
  13. R. Kamel, “New inverter control for balancing standalone micro-grid phase voltages: A review on MG power quality improvement”, Renewable and Sustainable Energy Reviews, vol. 63, pp. 520-532, (2016). [CrossRef] [Google Scholar]
  14. A. Maheri, “Multi-objective design optimization of standalone hybrid wind-PV-diesel systems under uncertainties”, Renewable Energy, vol. 66, pp. 650-661, (2014). [CrossRef] [Google Scholar]
  15. A. Maheri, “A critical evaluation of deterministic methods in size optimization of reliable and cost effective standalone hybrid renewable energy systems”, Reliability Engineering & System Safety, vol. 130, pp. 159-174, (2014). [CrossRef] [Google Scholar]
  16. T. Ma, H. Yang and L. Lu, “A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island”, Applied Energy, vol. 121, pp. 149-158, (2014). [Google Scholar]
  17. S. Ahmadi and S. Abdi, “Application of the Hybrid Big Bang–Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system”, Solar Energy, vol. 134, pp. 366-374, (2016). [CrossRef] [Google Scholar]
  18. A. Perera, R. Attalage, K. Perera and V. Dassanayake, “Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission”, Energy, vol. 54, pp. 220-230, (2013). [CrossRef] [Google Scholar]
  19. H. Belmili, M. Almi, B.Bendib and S. Bolouma, “A Computer Program Development for Sizing Stand-alone Photovoltaic-Wind Hybrid Systems”, Energy Procedia, vol. 36, pp. 546-557, (2013). [CrossRef] [Google Scholar]
  20. S. Semaoui, A. Arab, S. Bacha and B. Azoui, “Optimal Sizing of a Stand-alone Photovoltaic System with Energy Management in Isolated Areas”, Energy Procedia, vol. 36, pp. 358-368, (2013). [CrossRef] [Google Scholar]
  21. Ibrahim, A.W., Zhijian, F., Jiuqing, C., Farh, H.M.H., Aboudrar, I., Dagal, I., Kandil, T., Al-Shamma'a, A.A. and Saeed, F. Fast DC-link voltage control based on power flow management using linear ADRC combined with hybrid salp particle swarm algorithm for PV/wind energy conversion system. International Journal of Hydrogen Energy, 61, pp.688-709 (2024). [CrossRef] [Google Scholar]
  22. Versaci, M. and La Foresta, F. Fuzzy Approach for Managing Renewable Energy Flows for DC-Microgrid with Composite PV-WT Generators and Energy Storage System. Energies, 17(2), p.402 (2024). [CrossRef] [Google Scholar]
  23. Jamadar, S. and Singaram, G. Design and development of energy management system for solar electric vehicle with dynamic power split approach. Australian Journal of Electrical and Electronics Engineering, pp.1-12 (2024). [Google Scholar]
  24. Michael, A.A., Kehinde, O.P., Olawale, O.B., Adebayo, O.E. and Samuel, A.O. Dynamic Impact of Hybrid Wind-Solar Photovoltaic Power Injection on Small Signal Stability of Nigerian 11 kV Power System using Self Organizing Map Neural Network. Scientific African, p.e02214 (2024). [Google Scholar]
  25. Elymany, M.M., Enany, M.A. and Elsonbaty, N.A., 2024. Hybrid optimized-ANFIS based MPPT for hybrid microgrid using zebra optimization algorithm and artificial gorilla troops optimizer. Energy Conversion and Management, 299, p.117809. [CrossRef] [Google Scholar]
  26. Maka, A.O. and Chaudhary, T.N., 2024. Performance investigation of solar photovoltaic systems integrated with battery energy storage. Journal of Energy Storage, 84, p.110784. [CrossRef] [Google Scholar]
  27. Endiz, M.S., 2024. Design and implementation of microcontroller-based solar charge controller using modified incremental conductance MPPT algorithm. Journal of Radiation Research and Applied Sciences, 17(2), p.100938. [CrossRef] [Google Scholar]
  28. Aljafari, B., Balachandran, P.K., Samithas, D. and Thanikanti, S.B., 2023. Solar photovoltaic converter controller using opposition-based reinforcement learning with butterfly optimization algorithm under partial shading conditions. Environmental Science and Pollution Research, 30(28), pp.72617-72640. [CrossRef] [Google Scholar]
  29. Oliver, J.S., David, P.W., Balachandran, P.K. and Mihet-Popa, L., 2022. Analysis of grid-interactive PV-fed BLDC pump using optimized MPPT in DC–DC converters. Sustainability, 14(12), p.7205. [CrossRef] [Google Scholar]
  30. Dehghani, M. and Trojovský, P., 2023. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Frontiers in Mechanical Engineering, 8, p.1126450. [CrossRef] [Google Scholar]
  31. Ganti, P.K., Naik, H. and Barada, M.K., 2022. Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree approach. Energy, 244, p.122561. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.