Open Access
Issue
E3S Web of Conf.
Volume 550, 2024
The 16th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2024 (YS24)
Article Number 01024
Number of page(s) 13
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202455001024
Published online 16 July 2024
  1. L. Junxia, Y. En-Hua, Cement and Concrete Composites. Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. [2016], volume 78, pages 33-42 Available: http://dx.doi.org/10.1016/j.cemconcomp.2016.12.013. [Google Scholar]
  2. L. Haoxin 1, L. Dong, J. Zhengwu, Online. Journal of Cleaner Production. Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. [2016], volume 133, pages 1017-1026. Available: http://dx.doi.org/10.1016/j.jclepro.2016.05.149. [cit. 2024]. [Google Scholar]
  3. C. Vogt, Ultrafine particles in concrete. Online, Doctoral Thesis. SE-100 44 Stockholm, Sweden: School of Architecture and the Built Environment, [2010]. Volume 177, pages 1-177. Available: https://www.diva portal.org/smash/get/diva2:304967/FULLTEXT01.pdf&sa=U&ei=relWU- OOJMSa8AG8rICgCA&ved=0CDoQFjAG&usg=AFQjCNE9PYawGqkbgUoQSd6sb hvDU5aa5A. [Google Scholar]
  4. M. Braga, J.D. Brito, R. Veiga, Materials and Structures. Reduction of the cement content in mortars made with fine concrete aggregates. [2014], volume 12, pages 1-12. Available: https://excsustconcrete.tecnico.ulisboa.pt/uploads/6/4/2/0/64209325/8_reduction_of_t he_cement_content_in_mortars_made_with_fine_concrete_aggregates.pdf. [Google Scholar]
  5. L. Turanli, F. Bektas, P.M. Monteiro, Cement and Concrete Research. Use of ground clay brick as a pozzolanic material to reduce the alkali–silica reaction. [2003], Volume 33, pages 1539-1542. Available: https://www.sciencedirect.com/science/article/abs/pii/S0008884603001017. [Google Scholar]
  6. A. Naceri, M.C. Hamina, Use of waste brick as a partial replacement of cement in plaster. Waste Manag. [2009], Volume 29, 2378–2384. Available: https://www.researchgate.net/publication/24345734_Use_of_waste_brick_ as_a_partial_replacement_of_cement_in_mortar [CrossRef] [PubMed] [Google Scholar]
  7. M. Heikal, K.M. Zohdy, M. Abdelkreem, Construction and Building Materials. Mechanical, microstructure and rheological characteristics of high performance self- compacting cement pastes and concrete containing ground clay bricks. [2013]. Volume 38, pages 101-109. Available: https://www.sciencedirect.com/science/article/abs/pii/S095006181200637X. [Google Scholar]
  8. B.B. Sabir, Construction and Building Materials. Metakaolin and calcined clays as pozzolans for concrete: a review., [2001], volume 23, pages 441-454. Available: https://doi.org/https://doi.org/10.1016/S0958-9465(00)00092-5. [Google Scholar]
  9. K.L. Scrivener, V.M. John, E.M. Gartner, Cement and concrete researche. Eco- efficient cements: Potential, economically viable solutions for a low-CO2, cement- based materials industry, United Nations Environment Program, [2018]. Volume 114, pages 2-26. Available: eco_efficient_cements.pdf (unep.org) [Google Scholar]
  10. A.A. Aliabdo, A.E.M.A. Elmaoty, Construction and Building Materials. Utilization of waste glass powder in the production of cement and concrete., [2016], volume 124, pages 866-877. Available: http://dx.doi.org/10.1016/j.conbuildmat.2016.08.016. [Google Scholar]
  11. Dr. A. Favier, Dr. C. De Wolf, Prof. K. Scrivener, Prof. G. Habert, A sustainable future for the european cement and concrete industry. Technology assessment for full decarbonisation of the industry by 2050. [2018]. Volume 96, pages from 1-96. Available: https://europeanclimate.org/wpcontent/uploads/2018/10/AB_SP_Decarboni sation_report.pdf. [Google Scholar]
  12. J. Juhart, M. Autischer, M. Sakoparning, M. Kruger, The Realization of Clinker- Reduced, Performance-Based Sustainable Concrete by the Micro-Filler, Eco-Filler Concept. Online. Materials. 2021, roč. 2021, č. 14, s. 22. Available: https://www.mdpi.com/1996-1944/14/17/4958. [Google Scholar]
  13. R.J. Flatt, N. Roussel, C.R. Cheeseman, Concrete: an eco material that needs to be improved, J. Eur. Ceram. Soc. 32 (2012) 2787–2798, https://doi.org/10.1016/j.jeurceramsoc.2011.11.012. [cit. 2024-03-11]. [CrossRef] [Google Scholar]
  14. K. Salazar, S.M. Kimball, Mineral Commodity Summaries 2009. Online. National Minerals Information Center. 2009, roč. 2009, č. 1. Available: https://doi.org/https://doi.org/10.3133/mineral2009. [cit. 2024-03-11]. [Google Scholar]
  15. S.W. Tabsh, A.S. Abdelfatah, Influence of recycled concrete aggregates on strength properties of concrete, Constr. Build. Mater. 23 (2009) 1163–1167, https://doi.org/10.1016/j.conbuildmat.2008.06.007. [CrossRef] [Google Scholar]
  16. E. Khoury, W. Ambrós, B. Cazacliu, C.H. Sampaio, S. Remond, Heterogeneity of recycled concrete aggregates, an intrinsic variability, Constr. Build. Mater. 175 (2018) 705–713, https://doi.org/10.1016/j.conbuildmat.2018.04.163. [CrossRef] [Google Scholar]
  17. Z. Shui, D. Xuan, H. Wan, B. Cao, Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment, Constr. Build. Mater. 22 (2008) 1723 1729, https://doi.org/10.1016/j.conbuildmat.2007.05.012. [CrossRef] [Google Scholar]
  18. X. Ma, Z. Wang, Effect of ground waste concrete powder on cement properties, Adv. Mater. Sci. Eng. 2013 (2013) 1–5, https://doi.org/10.1155/2013/918294. [Google Scholar]
  19. Z. Prošek, V. Nežerka, Role of lime, fly ash, and slag in cement pastes containing recycled concrete fines. Online. Construction and Building Materials. 2019, roč. 2018, č. 201, s. 13. Available: https://doi.org/10.1016/j.conbuildmat.2018.12.227. [cit. 2024- 03-10]. [Google Scholar]
  20. L. Junxia, Y. En-Hua, Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Online. Cement and Concrete Composites. 2017, roč. 2016, č. 78, article 78, s. 11. Available: http://dx.doi.org/10.1016/j.cemconcomp.2016.12.013. [cit. 2024]. [Google Scholar]
  21. H.Wu, R. Hu, D. Yang, Z. Ma, Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: A comparative study. Online. Construction and Building Materials. 2023, roč. 2023, s. 18. Available: https://www.sciencedirect.com/science/article/abs/pii/S0950061823010413. [cit. 2024-03-11]. [Google Scholar]
  22. V. Horsakulthai, Effect of recycled concrete powder on strength, electrical resistivity, and water absorption of self-compacting mortars, Case Studies in Construction Materials Online. 2021, roč. 2021, s. 10. Available: https://doi.org/10.1016/j.cscm2021.e00725 [Google Scholar]
  23. J.P. Gonçalvesa, L.M. Tavaresb, R.D. Toledo Filhoc, E.M.R. Fairbairnc, Performance evaluation of cement mortars modified with metakaolin or ground brick. Online. Construction and Building Materials. 2009, roč. 2009, č. 23, s. 9. Available: https://repositorio.ufba.br/bitstream/ri/13341/1/1-s2.0- S0950061808002626-main.pdf. [cit. 2024-03-11]. [Google Scholar]
  24. A.A. Aliabdo, A.E.M.A. Elmaoty, H.H. Hassan, Utilization of crushed clay brick in concrete industry. Online. Alexandria Engineering Journal. 2009, roč. 2013, s. 3. Available: https://doi.org/10.1016/j.aej.2013.12.003. [cit. 2024-03-11]. [Google Scholar]
  25. Q. Tang, Z. Ma, H. Wu, W. Wang, The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: a critical review, Cem. Concr. Compos. 114 (2020) 103807, https://doi.org/10.1016/j.cscm2021.e00650 [CrossRef] [Google Scholar]
  26. L. Likes, A. Markandeya, M.M. Haider, D. Bollinger, J.S. McCloy, S. Nassiri, Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete, J. Clean. Prod. 364 (2022) 132651, https://doi.org/10.1016/j.jclepro.2022.132651 [CrossRef] [Google Scholar]
  27. Y. Zhao, J. Gao, C. Liu, X. Chen, Z. Xu, The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement, J. Clean. Prod. 242 (2020) 118521, https://doi.org/10.1016/j.jclepro.2019.118521 [CrossRef] [Google Scholar]
  28. Z.H. He, H.N. Zhu, M.Y. Zhang, J.Y. Shi, S.G. Du, B. Liu, Autogenous shrinkage and nano-mechanical properties of UHPC containing waste brick powder derived from construction and demolition waste, Constr. Build. Mater. 306 (2021) 124869, https://doi.org/10.1016/j.conbuildmat.2021.124869 [CrossRef] [Google Scholar]
  29. E. Navrátilová, P. Rovnaníková, Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars, Constr. Build. Mater. 120 (2016) 530–539, https://doi.org/10.1016/j.conbuildmat.2016.05.062. [CrossRef] [Google Scholar]
  30. H. Wu, C. Liang, C. Wang, Z. Ma, Properties of green mortar blended with waste concrete-brick powder at various components, replacement ratios and particle sizes, Constr. Build. Mater. 342 (2022) 128050, https://doi.org/10.1016/j.conbuildmat.2022.128050. [CrossRef] [Google Scholar]
  31. C. Xiong, W. Chen, M. Shen, Z. Li, Experimental investigation on recycled clay brick powder as a sand replacement in LFC, Mag. Concr. Res. 71 (23) (2019) 1206–1217, https://doi.org/10.1680/jmacr.18.00159. [CrossRef] [Google Scholar]
  32. DU, Hongijan, K.H. Tan, Waste Glass Powder as Cement Replacement in Concrete. Online. Journal of advanced concrete technology. 2014, roč. 2014, s. 11. Available: https://www.jstage.jst.go.jp/article/jact/12/11/12_468/_article/-char/ja/. [cit. 2024-03-11]. [Google Scholar]
  33. A. ZIDOL, M.T. Tognonvi, A.T. Hamou, Effect of Glass Powder on Concrete Sustainability. Online. Scientific Research Publishing. 2017, roč. 2017, č. 7, s. 14. Available: https://www.scirp.org/journal/paperinformation?paperid=75985. [cit. 2024- 03-11]. [Google Scholar]
  34. S. Seitl, P. Miarka, J. Klusák, J. Domski, J. Katzer, H. Šimonová, Change of a crack propagation rate in fine-grained cement-based composites due to partial replacement of aggregate by ceramic waste. Key Eng Mat. 2018;761: 111–115. Available: https://doi.org/10.4028/www.scientific.net/kem.761.111. [cit. 2024-03-13]. [CrossRef] [Google Scholar]
  35. J. Halbiniak, J. Katzer, M. Major, B. Langier, An example of harnessing crushed ceramic pots for the production of watertight concrete. Online. Fib WILEY. 2020, roč. 2020, s. 7. Available: https://doi.org/https://doi.org/10.1002/suco.202000039. [cit. 2024-03-11]. [Google Scholar]
  36. P. Awoyera, J. Ndambuki, J.O. Akinmusuru, D.O. Omole, Characterization of ceramic waste aggregate concrete. HBRC J. 2018;14:282–287. Available: https://doi.org/10.1016/j.hbrcj.2016.11.003 [cit. 2024-03-13]. [Google Scholar]
  37. T. Kulovaná, E. Vejmelková, M. Keppert, P. Rovnaníková, Z. Keršner, R. Černý, Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Struct Concr. 2016;17(1) :105–115. Available: https://doi.org/10.1002/suco.201500029. [cit. 2024-03-13]. [CrossRef] [Google Scholar]
  38. D.M. Sadek, H.A.E. Nouhy, Properties of paving units incorporating crushed ceramic. HBRC J. 2014;10:198–205. https://doi.org/10.1016/j.hbrcj.2013.11.006. [CrossRef] [Google Scholar]
  39. F. Pacheco-Torgal, S. Jalali, Reusing ceramic wastes in concrete. Construct Build Mater. 2010;24:832 838. https://doi.org/10.1016/j.conbuildmat.2009.10.023. [CrossRef] [Google Scholar]
  40. P. Torkittikul, A. Chaipanich, Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cem Concr Compos. 2010;32:440–449. https://doi.org/10.1016/j.cemconcomp.2010.02.004 [CrossRef] [Google Scholar]
  41. A. Halicka, P. Ogrodnik, B. Zegardlo, Using ceramic sanitary ware waste as concrete aggregate. Construct Build Mater. 2013; 48:295–305. https://doi.org/10.1016/j.conbuildmat.2013.06.063. [CrossRef] [Google Scholar]
  42. Z. Keshavarz, D. Mostofinejad, Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Construct Build Mater. 2019;195:218–230. https://doi.org/10.1016/j.conbuildmat.2018.11.033. [CrossRef] [Google Scholar]
  43. C. Medina, M.S. de Rojas, C. Thomas, J. Polanco, M. Frías, Durability of recycled concrete made with recycled ceramic sanitary ware aggregate inter-indicator relationships. Construct Build Mater. 2016; 105: 480–486. https://doi.org/10.1016/j.conbuildmat.2015.12.176. [CrossRef] [Google Scholar]
  44. P.O. Awoyera, Characterization of ceramic waste aggregate concreteFootnote. Online. HBRC Journal. 2019, roč. 2016, s. 14. Available: https://doi.org/https://doi.org/10.1016/j.hbrcj.2016.11.003. [cit. 2024-03- 24]. [Google Scholar]
  45. S. KAEWUNRUEN, D. Li, Z. Xiang, Enhancement of Dynamic Damping in Eco- Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber. Online. Materials (Basel). 2018, roč. 2018. Available: https://doi.org/10.3390/ma11071169. [cit. 2024-03-24]. [Google Scholar]
  46. L. Zheng. S. Huo, X.; Y. Yuan, Experimental investigation on dynamic properties of rubberized concrete. Constr. Build. Mater. 2008, 22, 939–947. Available: https://doi.org/10.1016/j.conbuildmat.2007.03.005 [CrossRef] [Google Scholar]
  47. S. Kaewunruen, A. Rachid, K. Goto, Damping effects on vibrations of railway concrete sleepers. In Proceedings of the 3rd World Multidisciplinary Civil Engineering— Architecture—Urban Planning Symposium, Prigue, Czech, 13–17 June 2016. Available: https://pure-oai.bham.ac.uk/ws/portalfiles/portal/132122788/Kaewunruen_et_al_Damping_effects_WMCAUS_2018.pdf [Google Scholar]
  48. S. Kaewunruen, A. T. Akono, A. M. Remennikov, Attenuation effect of material damping on impact vibration responses of railway concrete sleepers. GeoMEast 2018, accepted. Available: https://pure- oai.bham.ac.uk/ws/files/54944605/GeoMEast_Kaewunruen_Sleepers.pdf [Google Scholar]
  49. S. Kaewunruen, A. Rachid, K. Goto, Damping effects on vibrations of railway concrete sleepers. In Proceedings of the 3rd World Multidisciplinary Civil Engineering— Architecture—Urban Planning Symposium, Prigue, Czech, 13–17 June 2016. Available: https://pure-oai.bham.ac.uk/ws/portalfiles/portal/132122788/Kaewunruen_et_al_Damping_effects_WMCAUS_2018.pdf [Google Scholar]
  50. B. Horizonte, Balanço das exportações e importações de rochas no 1º trimestre de 2023. Online. ABIROCHAS. 2023, roč. 2023, s. 10. Available: https://abirochas.com.br/wp-content/uploads/2023/06/Informe-01_2023-Balanc%CC%A7o-1o-trimestre-2023.pdf. [cit. 2024-03-24]. [Google Scholar]
  51. M.K. Degen, G.L. Vieira, L. Calmon, J.G. Uliana, R.S. Bastos, Concretos produzidos com resíduos provenientes do beneficiamento de rochas ornamentais como substituto parcial de cimento, An. Do 55◦Congr. Bras. Concreto CBC (2013, 2013,) 1–12. Available: https://www.researchgate.net/publication/319330265_Concretos_produzidos_com_res iduos_provenientes_do_beneficiamento_de_rochas_ornamentais_como_substituto_pa rcial_de_cimento [Google Scholar]
  52. P. Danish, G. Mohan Ganesh, Study on influence of Metakaolin and waste marble powder on self-compacting concrete – A state of the art review, Mater. Today:. Proc. (2020), https://doi.org/10.1016/j.matpr.2020.11.629. [Google Scholar]
  53. European Parliament and Council, Directive (EU) No 851/2018 - Waste, (2018). Available: https://www.legislation.gov.uk/eudr/2018/851/introduction [Google Scholar]
  54. Brasil, Plano Nacional de Resíduos S´olidos (Lei no 12.305/2010), Bras. Di´ario Of, Da Uni˜ao, 2011. Available:https://www.gov.br/mma/pt-br/acesso-a-informacao/acoes-e-programas/agendaambientalurbana/lixao-zero/plano_nacional_de_residuos_solidos- 1.pdf [Google Scholar]
  55. Influence of filler/cement and powder/total solids on the mixture design of self- compacting micro-concretes containing waste from the ornamental stone industry. Online. Construction and Building Materials. S. 18. Available: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.133445. [cit. 2024-03-16]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.