Open Access
Issue
E3S Web of Conf.
Volume 550, 2024
The 16th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2024 (YS24)
Article Number 01033
Number of page(s) 8
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202455001033
Published online 16 July 2024
  1. P. Mateckova, V. Bilek, O. Sucharda. Comparative Study of High-Performance Concrete Characteristics and Loading Test of Pretensioned Experimental Beams. Online. Crystals. 2021, 11, 4. ISSN 2073-4352. [https://doi.org/10.3390/cryst11040427] [Google Scholar]
  2. P.C. Aïtcin, High-performance cocnrete. Concrete construction. Prague: For the Czech Chamber of Authorized Engineers and Construction Technicians (ČKAIT) and the Czech Concrete Society, the Information Centre published ČKAIT, (2005). ISBN 80-867-6939- 9. [Google Scholar]
  3. P.C. Aïtcin, The durability characteristics of high-performance concrete: a review. Online. Cement and Concrete Composites. (2003), 4-5, p. 409-420. ISSN 09589465. [https://doi.org/10.1016/S0958-9465(02)00081-1] [Google Scholar]
  4. V. Bilek, C. Fiala, P. Hajek, High Performance concrete for sustainable building elements and structures, In Proceedings of the 3rd R. N. Raikar Memorial International Conference Gettu-Kodur International Symposium on Advances in Science Technology of Concrete, Mumbai, India, 14–15 December (2018); pp. 213–218, ISBN 978-93-88237- 28-4. [Google Scholar]
  5. F.J. Vázquez-Rodríguez, N. Elizondo-Villareal, L.H. Verástegui, A.M. Arato Tovar, J.F. López-Perales. Effect of Mineral Aggregates and Chemical Admixtures as Internal Curing Agents on the Mechanical Properties and Durability of High-Performance Concrete. Online. Materials. (2020), 9. ISSN 1996-1944. [https://doi.org/10.3390/ma13092090] [Google Scholar]
  6. L. Czarnecki, P. Woyciechowski, G. Adamczewaski. Risk of concrete carbonation with mineral industrial by-products. Online. KSCE Journal of Civil Engineering. (2018), 2, p. 755-764. ISSN 1226-7988. [https://doi.org/10.1007/s12205-017-1623-5] [CrossRef] [Google Scholar]
  7. L. Feo, F. Ascione, R. Penna, D. Lau, M. Lamberti. An experimental investigation on freezing and thawing durability of high-performance fiber reinforced concrete (HPFRC). Online. Composite Structures. (2020), ISSN 02638223. [https://doi.org/10.1016/j.compstruct.2019.111673] [Google Scholar]
  8. Y.S. Yoon, S.J. Kwon, Evaluation of time-dependent chloride resistance in HPC containing fly ash cured for 1 year. J. Korea Inst. Struct. Maint. Insp. (2018), 22, 52–59. [Google Scholar]
  9. P. Miarka, S. Seitl, M. Horňáková, P. Lehner, P. Konečný, O. Sucharda, V.Bílek Influence of chlorides on the fracture toughness and fracture resistance under the mixed mode I/II of high-performance concrete (2020) Theoretical and Applied Fracture Mechanics, 110, art. no. 102812, [https://doi.org/j.tafmec.2020.102812] [CrossRef] [Google Scholar]
  10. S. Park, S. Wu, Z. Liu, S. Pyo. The Role of Supplementary Cementitious Materials (SCMs) in Ultra High-Performance Concrete (UHPC): A Review. Online. Materials. (2021), 6. ISSN 1996-1944. [https://doi.org/10.3390/ma14061472] [Google Scholar]
  11. E. Worrell, L. Price, N. Martin, C. Hendriks, L.O. Media. CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY. Online. Annual Review of Energy and the Environment. (2001), 1, p. 303-329. ISSN 1056-3466. [https://doi.org/10.1146/annurev.energy.26.1.303] [CrossRef] [Google Scholar]
  12. R. Yu, P. Spiesz, H.J.H. Brouwers. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Online. Cement and Concrete Research. (2014), p. 29-39. ISSN 00088846. [https://doi.org/10.1016/j.cemconres.2013.11.002] [Google Scholar]
  13. V. Bilek, O. Sucharda, D. Bujdos. Frost Resistance of Alkali-Activated Concrete—An Important Pillar of Their Sustainability. Online. Sustainability. (2021), 2. ISSN 2071- 1050. [https://doi.org/10.3390/su13020473] [Google Scholar]
  14. R. Gandel, J. Jerabek, Z. Marcalíková. Reinforced Concrete Beams Without Shear Reinforcement Using Fiber Reinforced Concrete and Alkali-Activated Material. Online. Civil and Environmental Engineering. (2023), 1, p. 348-356. ISSN 2199-6512. [https://doi.org/10.2478/cee-2023-0031] [CrossRef] [Google Scholar]
  15. Z. Prošek, J. Trejbal, V. Nežerka, V. Goliáš, M. Faltus. Recovery of residual anhydrous clinker in finely ground recycled concrete. Online. Resources, Conservation and Recycling. (2020), ISSN 09213449. [https://doi.org/10.1016/j.resconrec.2019.104640] [Google Scholar]
  16. O. Sucharda, Z. Marcalikova, R. Gandel. Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement. Online. Materials. 2022, 16. ISSN 1996-1944. [https://doi.org/10.3390/ma15165707] [Google Scholar]
  17. M. Vavrus, J. Kralovanec. Study of Application of Fiber Reinforced Concrete in Anchorage Zone. Online, Buildings. 2023, 13. ISSN 2075-5309. [https://doi.org/10.3390/buildings13020524] [Google Scholar]
  18. P. Ćmiel. Properties of concrete and development of concrete formulas for advanced and additive technologies. Online, master’s thesis, supervisor O. Sucharda. Ostrava: VŠB- TUO FAST, (2023). [https://dspace.vsb.cz/handle/10084/152076] [Google Scholar]
  19. Experimantal dataset: [10.5281/zenodo.10829289] [Google Scholar]
  20. ČSN EN 1015–3 Methods of test for mortar for masonry - Part 3: Determination of consistency of fresh mortar (by flow table). Prague: The Czech Office for Standards, Metrology and Testing, (2000). [Google Scholar]
  21. Czech Concrete Society. TP ČBS 07, Ultra high-performance concrete (UHPC). 1. 2022. [Google Scholar]
  22. ČSN EN 196-1 Methods of testing cement - Part 1: Determination of strength. Prague: The Czech Office for Standards, Metrology and Testing, 2016. [Google Scholar]
  23. ČSN 73 1371 Non-destructive testing of concrete – Method of ultrasonic pulse testing of concrete. Praha: The Czech Office for Standards, Metrology and Testing, 2011. [Google Scholar]
  24. ČSN EN 12390-3. Testing hardened concrete – Part 3: Compressive strength of test specimens. Prague: The Czech Office for Standards, Metrology and Testing, 2020. [Google Scholar]
  25. ČSN EN 12390-6. Testing hardened concrete - Part 6: Tensile splitting strength of test specimens. Prague: The Czech Office for Standards, Metrology and Testing, 2024. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.