Open Access
Issue
E3S Web Conf.
Volume 551, 2024
International Conference on Electronics, Engineering Physics and Earth Science (EEPES 2024)
Article Number 02001
Number of page(s) 9
Section Renewable Energy and Green Technologies
DOI https://doi.org/10.1051/e3sconf/202455102001
Published online 17 July 2024
  1. A. Imburgia, Advantages and disadvantages of hydroelectric power, Advanced Journal of Environmental Science and Technology, 13, 2 (2022) [Google Scholar]
  2. I. Auestad, Y. Nilsen, K. Rydgren, Environmental Restoration in Hydropower Development—Lessons from Norway. Sustainability 10, (2018) [Google Scholar]
  3. A. Lindström, A. Ruud, Whose Hydropower? From Conflictual Management into an Era of Reconciling Environmental Concerns; A Retake of Hydropower Governance towards Win-Win Solutions?, Sustainability, 9, 1262 (2017) [CrossRef] [Google Scholar]
  4. S. Pacca, A. Horvath, Greenhouse gas emissions from building and operating electric power plants in the upper Colorado River basin. Env. Sci. Technol. 36, 3194 -3200(2002) [CrossRef] [PubMed] [Google Scholar]
  5. I.A. Shiklomanov, Appraisal and assessment of world water resources. Water Int. 25, 11 -32(2000) [CrossRef] [Google Scholar]
  6. J. Wang, X. Chen, Z. Liu, V.F. Frans, Z. Xu, X. Qiu, et al. Assessing the water and carbon footprint of hydropower stations at a national scale. Sci Total Environ;676, 595-612, (2019) [CrossRef] [PubMed] [Google Scholar]
  7. L. Scherer, S. Pfister, Global water footprint assessment of hydropower, Renewable Energy 99, 711e720, (2016) [CrossRef] [Google Scholar]
  8. L.I. Vuta, G.E. Dumitran, E.I. Tica, B. Popa, Carbon footprint of Vidraru hydropower development, IOP Conf. Ser.: Earth Environ. Sci. 1136, 012061 (2023), 10.1088/1755-1315/1136/1/012061 [CrossRef] [Google Scholar]
  9. M. Li, N. He, Carbon intensity of global existing and future hydropower reservoirs, Renewable and Sustainable Energy Reviews, 162, 112433 (2022) [CrossRef] [Google Scholar]
  10. L. Gagnon, J.F. van de Vate, Greenhouse gas emissions from hydropower, Energy Policy 25, 1, pp 7-13, (1997) https://doi.org/10.1016/S0301-4215(96)00125-. [CrossRef] [Google Scholar]
  11. E.G. Hertwich, Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol; 47, 9604 -11(2013) https://doi.org/10.1021/es401820. [CrossRef] [PubMed] [Google Scholar]
  12. L.D. Robescu, A.D. Bondrea, The water footprint from hydroelectricity: a case study for a hydropower plant in Romania, E3S Web of Conferences 85, 06012 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  13. R.J. Hogeboom, L. Knook, A.Y. Hoekstra, The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 113, 285 -294(2018) https://doi.org/10.1016/j.advwatres.2018.01.028. [CrossRef] [Google Scholar]
  14. C.R. Teodoru, J. Bastien, M. Bonneville, P.A. del Giorgio, M. Demarty, M. Garneau, et al. The net carbon footprint of a newly created boreal hydroelectric reservoir. Global Biogeochem Cycles 26, (2012) [CrossRef] [Google Scholar]
  15. T. DelSontro, J.J. Beaulieu, J.A. Downing. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol Oceanogr Lett; 3, 64 -75(2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.