Open Access
Issue
E3S Web Conf.
Volume 551, 2024
International Conference on Electronics, Engineering Physics and Earth Science (EEPES 2024)
Article Number 02003
Number of page(s) 13
Section Renewable Energy and Green Technologies
DOI https://doi.org/10.1051/e3sconf/202455102003
Published online 17 July 2024
  1. United Nations, Net Zero Coalition 2024, Available at: https://www.un.org/en/climatechange/net-zero-coalition (Accessed on 20.04.2024. [Google Scholar]
  2. S. Lewandowski, A. Ullrich, Measures to reduce corporate GHG emissions: A reviewbased taxonomy and survey-based cluster analysis of their application and perceived effectiveness, J Environ Manage, 325, 116437 (2023) [CrossRef] [PubMed] [Google Scholar]
  3. A.I. Osman, S. Fawzy, E. Lichtfouse, D.W. Rooney, Planting trees to combat global warming, Environ Chem Lett, 21, 6, pp. 3041-3044, (2023) [CrossRef] [Google Scholar]
  4. Policies and practices for successful schools, 2, OECD. org, Available at: https://www.oecd.org/education/pisa-2015-results-volume-ii-9789264267510-en.htm, (Accessed on 10.03.2024). [Google Scholar]
  5. K. Simeonov, N. Mihailov, N. Valov, K. Gabrovska-Evstatieva, Analysis of a PV Installation with a Battery Storage and BMS at a Residential Building, in Proceedings of the 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria (2022), https://www.doi.org/10.1109/EEAE53789.2022.983120. [Google Scholar]
  6. European Commission, Implementing the repower EU action plan: investment needs, hydrogen accelerator and achieving the bio-methane targets, Brussels, May (2022) [Google Scholar]
  7. European Parliament, Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in natural gas and repealing Directive 2003/55/EC (2009) [Google Scholar]
  8. M. Ahmad, K. Salah, IoT security: review, blockchain solutions, and open challenges, Futur Gener. Comput. Sys, 82, 1, pp. 395-411 (2018), https://www.doi.org/0.1016/j.future.2017.11.02. [CrossRef] [Google Scholar]
  9. E.M. Dogo, A.F. Salami, N.I. Nwulu, C.O. Aigbavboa, Blockchain and Internet of Things-Based Technologies for Intelligent Water Management System, Artificial Intelligence in IoT, Transactions on Computational Science and Computational Intelligence, Cham: Springer International Publishing, 129-150 (2019) [CrossRef] [Google Scholar]
  10. L. Insights, Energy Web, VW partner to explore blockchain, EV batteries for energy storage, Ledger Insights-blockchain for enterprise, Available at: https://www.ledgerinsights.com/energy-web-vw-blockchain-ev-batteries-for-energystorage/, (Accessed on 23.03.2024). [Google Scholar]
  11. A.S. Silva, et al., Capacitated Waste Collection Problem Solution Using an Open-Source Tool, Comput, 12, 1, 15, (2023), https://www.doi.org/10.3390/computers1201001. [CrossRef] [Google Scholar]
  12. J.R. Bolton, Solar photoproduction of hydrogen: A review, Sol Energy, 57, 1, pp. 37-50, (1996), https://www.doi.org/10.1016/0038-092X(96)00032-. [CrossRef] [Google Scholar]
  13. V.J. Aimikhe, O.E. Eyankware, Recent Advances in White Hydrogen Exploration and Production: A Mini Review, JENRR, 13, 4, pp. 64-79 (2023), https://www.doi.org/10.9734/jenrr/2023/v13i427. [CrossRef] [Google Scholar]
  14. A.M. Oliveira, R.R. Beswick, Y. Yan, A green hydrogen economy for a renewable energy society, Curr Opin Chem Eng, 33, 100701 (2021), https://www.doi.org/10.1016/j.coche.2021.10070. [CrossRef] [Google Scholar]
  15. P. Saha, et al., Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy, Int J Green Energy, 1-15 (2023), https://www.doi.org/10.1080/15435075.2023.224458. [CrossRef] [Google Scholar]
  16. A. Ekhtiari, D. Flynn, E. Syron, Green Hydrogen Blends with Natural Gas and Its Impact on the Gas Network, Hydrogen, 3, 4, pp. 402-417 (2022), https://www.doi.org/10.3390/hydrogen304002. [CrossRef] [Google Scholar]
  17. I.A. Gondal, Hydrogen integration in power-to-gas networks, Int J Hydrogen Energy, 44, 3, 1803-1815 (2019), https://www.doi.org/10.1016/j.ijhydene.2018.11.16. [CrossRef] [Google Scholar]
  18. Y. Zhao, V. McDonell, S. Samuelsen, Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner, Int J Hydrogen Energy, 44, 23, pp. 12239-12253 (2019), https://www.doi.org/10.1016/j.ijhydene.2019.03.10. [CrossRef] [Google Scholar]
  19. J.M.M. Arcos, D.M.F. Santos, The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production, Gases, 3, 1, 25-46 (2023), https://www.doi.org/10.3390/gases301000. [CrossRef] [Google Scholar]
  20. A. Ajanovic, M. Sayer, and R. Haas, The economics and the environmental benignity of different colors of hydrogen, Int J Hydrogen Energy, 47, 57, 24136-24154 (2022), https://www.doi.org/10.1016/j.ijhydene.2022.02.09. [CrossRef] [Google Scholar]
  21. Decision-making tools and techniques Part 3B-A Guide to Assessing Needs (2022), Available at: https://na.weshareresearch.com/wp-content/uploads/2022/03/Section-3B.pdf, (Accessed on 15.04.2024. [Google Scholar]
  22. Ze-Shui Xu, An ideal point based approach to multi-criteria decision making with uncertain linguistic information, in Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China (2004) [Google Scholar]
  23. C. Acar, I. Dincer, Selection criteria and ranking for sustainable hydrogen production options, Int J Hydrogen Energy, 47, 95, 40118-40137 (2022), https://www.doi.org/10.1016/j.ijhydene.2022.07.13. [CrossRef] [Google Scholar]
  24. M. Nasser, T.F. Megahed, S. Ookawara, H. Hassan, A review of water electrolysis– based systems for hydrogen production using hybrid/solar/wind energy systems, Environ Sci Pollut Res, 29, 58, 86994-87018 (2022), https://www.doi.org/10.1007/s11356-022-23323-. [CrossRef] [PubMed] [Google Scholar]
  25. M. Hrabovsky and all., Steam Plasma Methane Reforming for Hydrogen Production, Plasma Chem Plasma Process, 38, 4, 743-758 (2018), https://www.doi.org/10.1007/s11090-018-9891-. [CrossRef] [Google Scholar]
  26. H. Beloev, N. Evstatieva, Investigating the Influence of the Process Parameters on the Energy Characteristics of a Gasifier, in Proceedings of the 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria (2020), https://www.doi.org/10.1109/EEAE49144.2020.927899. [Google Scholar]
  27. N. Evstatieva, H. Beloev, Modelling the Energy Fluxes in a Biomass Gasifier, in Proceedings of the 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria (2020), https://www.doi.org/10.1109/EEAE49144.2020.927897. [Google Scholar]
  28. M. Nasser, T.F. Megahed, S. Ookawara, H. Hassan, Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic, Energy Convers Manage, 267, 115870 (2022), https://www.doi.org/10.1016/j.enconman.2022.11587. [CrossRef] [Google Scholar]
  29. B.H. Liu, Z.P. Li, A review: Hydrogen generation from borohydride hydrolysis reaction, J Power Sources, 187, 2, 527-534 (2009), https://www.doi.org/10.1016/j.jpowsour.2008.11.03. [CrossRef] [Google Scholar]
  30. F. Xiao, T. Wu, Y. Yang, Research progress in hydrogen production by hydrolysis of magnesium-based materials, Int J Hydrogen Energy, 49, 696-718 (2024) [CrossRef] [Google Scholar]
  31. IEA, Towards Hydrogen Definitions Based on their Emissions Intensity, OECD Publishing, Paris, https://doi.org/10.1787/44618fd1-en (2023). [Google Scholar]
  32. K. Almutairi, S.S. Hosseini Dehshiri, S.J. Hosseini Dehshiri, A. Mostafaeipour, A. Issakhov, and K. Techato, A thorough investigation for development of hydrogen projects from wind energy: A case study, Int J Hydrogen Energy, 46, 36, 18795-18815 (2021), https://www.doi.org/10.1016/j.ijhydene.2021.03.06. [CrossRef] [Google Scholar]
  33. IEA, Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 – Charts – Data & Statistics, Available at: https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-ofhydrogen-production-by-energy-source-and-technology-2019-and-2050, (Accessed on 15.03.2024). [Google Scholar]
  34. M. Kayfeci, A. Keçebaş, M. Bayat, Hydrogen production, Sol Hydrogen Prod, 45-83 (2019), https://www.doi.org/10.1016/B978-0-12-814853-2.00003-. [CrossRef] [Google Scholar]
  35. F. Dawood, M. Anda, G.M. Shafiullah, Hydrogen production for energy: An overview, Int J Hydrogen Energy, 45, 7, 3847-3869 (2020), https://www.doi.org/10.1016/j.ijhydene.2019.12.05. [CrossRef] [Google Scholar]
  36. S. Şevik, Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus, Int J Hydrogen Energy, 47, 57, 23935-23956 (2022), https://www.doi.org/10.1016/j.ijhydene.2022.05.193. [CrossRef] [Google Scholar]
  37. I. Stoyanov, T. Iliev, G. Mihaylov, Simulation Investigation of the Wind Load of Photovoltaic Panels, E3S Web Conf, 327, 02002 (2021), https://www.doi.org/10.1051/e3sconf/20213270200. [CrossRef] [EDP Sciences] [Google Scholar]
  38. P. Vitliemov, K. Markov, Hybrid device for automatic assembly, IOP Conf Ser: Mater Sci Eng, 971, 4, 042098 (2020), https://www.doi.org/10.1088/1757-899X/971/4/04209. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.