Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01025
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202455201025
Published online 23 July 2024
  1. Thulukkanam, K. (2000). Heat exchanger design handbook. CRC press. [Google Scholar]
  2. Sur, A., & Gulia, V. (2022). A comprehensive review on microchannel heat exchangers, heat sink, and polymer heat exchangers: current state of the art. Frontiers in Heat and Mass Transfer (FHMT), 18. [Google Scholar]
  3. Arie, M.A., Shooshtari, A.H., Tiwari, R., Dessiatoun, S.V., Ohadi, M.M., & Pearce, J.M. (2017). Experimental characterization of heat transfer in an additively manufactured polymer heat exchanger. Applied Thermal Engineering, 113, 575-584. [CrossRef] [Google Scholar]
  4. Rasouli, E., Fricke, E., & Narayanan, V. (2022). High efficiency 3-D printed microchannel polymer heat exchangers for air conditioning applications. Science and Technology for the Built Environment, 28(3), 289–306. [CrossRef] [Google Scholar]
  5. Minton, P. (1990). Process heat transfer. In International Heat Transfer Conference Digital Library. Begel House Inc. [Google Scholar]
  6. Costa, A.L., & Queiroz, E.M. (2008). Design optimization of shell-and-tube heat exchangers. Applied thermal engineering, 28(14-15), 1798-1805. [CrossRef] [Google Scholar]
  7. API Standard 660, Shell and Tube Heat Exchangers-for Petroleum and Natural Gas Industries, 7th edn., American Petroleum Institute, Washington, DC, 2003. [Google Scholar]
  8. Standards of the Tubular Exchanger Manufacturers Association. (2007). Tubular Exchanger Manufacturers Association. Inc., Tarrytown, New York. [Google Scholar]
  9. Sanaye, S., & Hajabdollahi, H. (2010). Multi-objective optimization of shell and tube heat exchangers. Applied Thermal Engineering, 30(14-15), 1937-1945. [CrossRef] [Google Scholar]
  10. Xie, G.N., Wang, Q.W., Zeng, M., & Luo, L.Q. (2007). Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach. Applied Thermal Engineering, 27(5-6), 1096-1104. [CrossRef] [Google Scholar]
  11. Chang, C., Liao, Z., Costa, A.L., & Bagajewicz, M.J. (2022). Globally optimal design of intensified shell and tube heat exchangers using complete set trimming. Computers & Chemical Engineering, 158, 107644. [CrossRef] [Google Scholar]
  12. Selbas R., Kizilkan O., Reppich M. (2006) A new design approach for shell-and-tube heat exchangers using genetic algorithm from economic point of view. Chem Eng Process 45(4):268-275. [CrossRef] [Google Scholar]
  13. Caputo A.C., Pelagagge P.M., Salini P. (2008) Heat exchanger design based on economic optimization. Appl Therm Eng 28(10):1151-1159. [CrossRef] [Google Scholar]
  14. Ponce-Ortega J.M., Serna-Gonza'lez M., Jime'nez-Gutie'rrez A. (2009) Use of genetic algorithms for the optimal design of shelland-tube heat exchangers. Appl Therm Eng 29(2):203-209. [CrossRef] [Google Scholar]
  15. Babu B.V., Munawar S.A. (2007) Differential evolution strategies for the optimal design of shell and tube heat exchangers. Chem Eng Sci 62(14):3720-3739. [CrossRef] [Google Scholar]
  16. R.V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm, Appl. Math. Model. 37 (2013) 1147-1162. [CrossRef] [Google Scholar]
  17. Sahin A.S., Kilic B., Kilic U. (2011) Design and economic optimization of shell-and-tube heat exchangers using artificial bee colony (ABC) algorithm. Energy Convers Manag 52(11):1417-1425. [Google Scholar]
  18. Hadidi A., Nazari A. (2013) Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl Therm Eng 51(1-2):1263-1272. [CrossRef] [Google Scholar]
  19. Turgut O.E., Turgut M.S., Coban M.T. (2014) Design and economic investigation of shell and tube heat exchangers using improved intelligent tuned harmony search algorithm. Ain Shams Eng J 5(4):1215-1231. [CrossRef] [Google Scholar]
  20. Dhavle, S.V., Kulkarni, A.J., Shastri, A., & Kale, I.R. (2018). Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Computing and Applications, 30(1), 111–125. [CrossRef] [Google Scholar]
  21. Iyer, V.H., Mahesh, S., Malpani, R., Sapre, M., & Kulkarni, A.J. (2019). Adaptive range genetic algorithm: a hybrid optimization approach and its application in the design and economic optimization of shell-and-tube heat exchanger. Engineering Applications of Artificial Intelligence, 85, 444-461. [CrossRef] [Google Scholar]
  22. R.V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm, Appl. Math. Model. 37 (2013) 1147–1162. [CrossRef] [Google Scholar]
  23. Gomez A., L. Pibouleau, C. Azzaro-Pantel, S. Domenech, C. Latge, D. Haubensack, Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology, Energy Convers. Manage. 51 (2010) 859–871. [Google Scholar]
  24. Belanger S., L. Gosselin, Multi-objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery, Int. J. Energy Res. 36 (2012) 632–642. [CrossRef] [Google Scholar]
  25. Hilbert R., G. Janiga, R. Baron, D. Thévenin, Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms, Int. J. Heat Mass Transfer 49 (2006) 2567–2577. [CrossRef] [Google Scholar]
  26. Hadidi A., M. Hadidi, A. Nazari, A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view, Energy Convers. Manage. 67 (2013) 66–74. [Google Scholar]
  27. A.V. Azad, M. Amidpour, Economic optimization of shell and tube heat exchanger based on constructal theory, Energy 36 (2011) 1087–1096. [CrossRef] [Google Scholar]
  28. Liu, Q., Xu, G., Wen, J., Fu, Y., Zhuang, L., & Dong, B. (2022). Multivariate Design and Analysis of Aircraft Heat Exchanger Under Multiple Working Conditions Within Flight Envelope. Journal of Thermal Science and Engineering Applications, 14(6). [Google Scholar]
  29. Bharath, V.J. Analysis and implementation of certain multivariate statistical process monitoring tools for fault detection using isolation (FDI) task laboratory scale shell-tube heat exchanger. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-18. [Google Scholar]
  30. Backhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2021). Multivariate analysis. Springer Books. [Google Scholar]
  31. Timm, N.H. (Ed.). (2002). Applied multivariate analysis. New York, NY: Springer New York. [Google Scholar]
  32. Pearson K. 1901 On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559-572. (doi:10.1080/14786440109462720). [CrossRef] [Google Scholar]
  33. Jackson J.E.. 1991 A user’s guide to principal components. New York, NY: Wiley. [CrossRef] [Google Scholar]
  34. Hotelling, H. (1993), Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, Vol. 24, pp. 417-441. [Google Scholar]
  35. Maćkiewicz, A., & Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19(3), 303–342. [CrossRef] [Google Scholar]
  36. Ringnér, M. (2008). What is principal component analysis? Nature biotechnology, 26(3), 303–304. [CrossRef] [PubMed] [Google Scholar]
  37. Minka, T. (2000). Automatic choice of dimensionality for PCA. Advances in neural information processing systems, 13. [Google Scholar]
  38. Kolenikov, S., & Angeles, G. (2004). The use of discrete data in PCA: theory, simulations, and applications to socioeconomic indices. Chapel Hill: Carolina Population Center, University of North Carolina, 20, 1-59. [Google Scholar]
  39. Bouwmans, T., Javed, S., Zhang, H., Lin, Z., & Otazo, R. (2018). On the applications of robust PCA in image and video processing. Proceedings of the IEEE, 106(8), 1427–1457. [CrossRef] [Google Scholar]
  40. Zhang, A.R., Cai, T.T., & Wu, Y. (2022). Heteroskedastic PCA: Algorithm, optimality, and applications. The Annals of Statistics, 50(1), 53–80. [Google Scholar]
  41. Ramirez-Figueroa, J.A., Martin-Barreiro, C., Nieto-Librero, A.B., Leiva, V., & Galindo-Villardón, M.P. (2021). A new principal component analysis by particle swarm optimization with an environmental application for data science. Stochastic Environmental Research and Risk Assessment, 35(10), 1969–1984. [CrossRef] [Google Scholar]
  42. Abdi, H., & Williams, L.J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433–459. [CrossRef] [Google Scholar]
  43. Sinnott, R. (2005). Chemical Engineering Design: Chemical Engineering Volume 6. Elsevier. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.