Open Access
Issue |
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
|
|
---|---|---|
Article Number | 01062 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202455201062 | |
Published online | 23 July 2024 |
- Sakka Y, Hirota N, Horii S, Ando T. Focus on materials analysis and processing in magnetic fields. Sci Technol Adv Mater 2009;10:010301. https://doi.org/10.1088/1468-6996/10/1/010301. [CrossRef] [PubMed] [Google Scholar]
- Mills AA. The Lodestone: History, Physics, and Formation. Ann Sci 2004;61:273–319. https://doi.org/10.1080/00033790310001642812. [CrossRef] [Google Scholar]
- Barber GW, Arrott AS. History and magnetics of compass adjusting. IEEE Trans Magn 1988;24:2883–5. https://doi.org/10.1109/20.92276. [CrossRef] [Google Scholar]
- O’Handley RC. Magnetic Materials. Encycl. Phys. Sci. Technol., Elsevier; 2003, p. 919–44. https://doi.org/10.1016/B0-12-227410-5/00393-8. [CrossRef] [Google Scholar]
- Caneva KL. Ampère, the Etherians, and the Oersted Connexion. Br J Hist Sci 1980;13:121–38. https://doi.org/10.1017/S0007087400017738. [CrossRef] [Google Scholar]
- Materón EM, Miyazaki CM, Carr O, Joshi N, Picciani PHS, Dalmaschio CJ, et al. Magnetic nanoparticles in biomedical applications: A review. Appl Surf Sci Adv 2021;6:100163. https://doi.org/10.1016/j.apsadv.2021.100163. [CrossRef] [Google Scholar]
- Khan MA, Sun J, Li B, Przybysz A, Kosel J. Magnetic sensors-A review and recent technologies. Eng Res Express 2021;3:022005. https://doi.org/10.1088/2631-8695/ac0838. [CrossRef] [Google Scholar]
- Melzer M, Mönch JI, Makarov D, Zabila Y, Cañón Bermúdez GS, Karnaushenko D, et al. Wearable Magnetic Field Sensors for Flexible Electronics. Adv Mater 2015;27:1274–80. https://doi.org/10.1002/adma.201405027. [CrossRef] [PubMed] [Google Scholar]
- Padnuru Sripathy A, Gupta M. Insight Into Layered Metal Matrix Composites. Encycl. Mater. Compos., Elsevier; 2021, p. 121–39. https://doi.org/10.1016/B978-0-12-819724-0.00021-5. [Google Scholar]
- Rahman MM, Islam M, Roy R, Younis H, AlNahyan M, Younes H. Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants 2022;10:281. https://doi.org/10.3390/lubricants10110281. [CrossRef] [Google Scholar]
- Behrens S, Appel I. Magnetic nanocomposites. Curr Opin Biotechnol 2016;39:89–96. https://doi.org/10.1016/j.copbio.2016.02.005. [CrossRef] [PubMed] [Google Scholar]
- Andrew Lin K-Y, Hsu F-K. Magnetic iron/carbon nanorods derived from a metal organic framework as an efficient heterogeneous catalyst for the chemical oxidation process in water. RSC Adv 2015;5:50790–800. https://doi.org/10.1039/C5RA06043E. [CrossRef] [Google Scholar]
- Bagdasarova KA, Perov NS, Karpacheva GP, Pile SE, Dzidziguri EL. Magnetic Behavior of Carbon-Metal Nanocomposites. Solid State Phenom 2010;168-169:349–52. https://doi.org/10.4028/www.scientific.net/SSP.168-169.349. [Google Scholar]
- Tugirumubano A, Go SH, Shin HJ, Kwac LK, Kim HG. Magnetic, Electrical, and Mechanical Behavior of Fe-Al-MWCNT and Fe-Co-Al-MWCNT Magnetic Hybrid Nanocomposites Fabricated by Spark Plasma Sintering. Nanomaterials 2020;10:436. https://doi.org/10.3390/nano10030436. [CrossRef] [PubMed] [Google Scholar]
- Maciejewska BM, Warowicka A, Baranowska-Korczyc A, Załęski K, Zalewski T, Kozioł KK, et al. Magnetic and hydrophilic MWCNT/Fe composites as potential T2-weighted MRI contrast agents. Carbon N Y 2015;94:1012–20. https://doi.org/10.1016/j.carbon.2015.07.091. [CrossRef] [Google Scholar]
- Qi X, Xu M, Zhong W, Ye X, Deng Y, Au C, et al. Magnetic Properties and Large-Scale Synthesis of Novel Carbon Nanocomposites via Benzene Decomposition over Ni Nanoparticles. J Phys Chem C 2009;113:2267–72. https://doi.org/10.1021/jp807898t. [CrossRef] [Google Scholar]
- Sun J, Wang L, Yang Q, Shen Y, Zhang X. Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating. Prog Org Coatings 2020;141:105552. https://doi.org/10.1016/j.porgcoat.2020.105552. [CrossRef] [Google Scholar]
- Chamchoy K, Inprasit T, Vanichvattanadecha C, Thiangtrong A, Anukunwithaya P, Modified Magnetite Nanoparticles. J Polym Environ 2021;29:484–91. https://doi.org/10.1007/s10924-020-01891-9. [CrossRef] [Google Scholar]
- Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J Hazard Mater 2012;229-230:371–80. https://doi.org/10.1016/j.jhazmat.2012.06.014. [CrossRef] [PubMed] [Google Scholar]
- Polymers for aerospace structures. Introd. to Aerosp. Mater., Elsevier; 2012, p. 268–302. https://doi.org/10.1533/9780857095152.268. [Google Scholar]
- Rozanov KN. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag 2000;48:1230–4. https://doi.org/10.1109/8.884491. [CrossRef] [Google Scholar]
- Abbasi M. Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal. J Clean Prod 2017;145:105–13. https://doi.org/10.1016/j.jclepro.2017.01.046. [CrossRef] [Google Scholar]
- Akbarbandari F, Zabihi M, Faghihi M. Synthesis of the magnetic core-shell bi‐metallic and tri‐metallic metal-organic framework nanocomposites for dye adsorption. Water Environ Res 2021;93:906–20. https://doi.org/10.1002/wer.1481. [CrossRef] [PubMed] [Google Scholar]
- Yakushko E.V., Kozhitov L.V., Muratov DG, Kostishin VG. NiCo/C nanocomposites: Synthesis and magnetic properties. Russ J Inorg Chem 2016;61:1591–5. https://doi.org/10.1134/S0036023616120202. [CrossRef] [Google Scholar]
- Dai PQ, Zhang C, Wen JC, Rao HC, Wang QT. Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys. J Mater Eng Perform 2016;25:594–600. https://doi.org/10.1007/s11665-016-1881-2. [CrossRef] [Google Scholar]
- Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall Mater Trans B Process Metall Mater Process Sci 2012;43:316–24. https://doi.org/10.1007/s11663-011-9597-z. [CrossRef] [Google Scholar]
- Thurber CR, Ahmad YH, Sanders SF, Al-Shenawa A, D’Souza N, Mohamed AMA, et al. Electrodeposition of 70-30 Cu-Ni nanocomposite coatings for enhanced mechanical and corrosion properties. Curr Appl Phys 2016;16:387–96. https://doi.org/10.1016/j.cap.2015.12.022. [CrossRef] [Google Scholar]
- Oswald B, Sujan GK. Superconducting Permanent Magnets: Potential Applications ☆. Ref. Modul. Mater. Sci. Mater. Eng., Elsevier; 2017. https://doi.org/10.1016/B978-0-12-803581-8.10370-4. [Google Scholar]
- Ferreira L-M-P, Bayraktar E, Miskioglu I, Robert M-H. New magnetic aluminum matrix composites (Al-Zn-Si) reinforced with nano magnetic Fe 3 O 4 for aeronautical applications. Adv Mater Process Technol 2018;4:358–69. https://doi.org/10.1080/2374068X.2018.1432940. [Google Scholar]
- Sajjia M, Baroutaji A, Olabi AG. The Introduction of Cobalt Ferrite Nanoparticles as a Solution for Magnetostrictive Applications. Ref. Modul. Mater. Sci. Mater. Eng., Elsevier; 2017. https://doi.org/10.1016/B978-0-12-803581-8.09264-X. [Google Scholar]
- Nisticò R, Cesano F, Garello F. Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. Inorganics 2020;8:6. https://doi.org/10.3390/inorganics8010006. [CrossRef] [Google Scholar]
- Kolhatkar A, Jamison A, Litvinov D, Willson R, Lee T. Tuning the Magnetic Properties of Nanoparticles. Int J Mol Sci 2013;14:15977–6009. https://doi.org/10.3390/ijms140815977. [CrossRef] [PubMed] [Google Scholar]
- Liu F, Hou Y, Gao S. Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 2014;43:8098–113. https://doi.org/10.1039/C4CS00162A. [CrossRef] [PubMed] [Google Scholar]
- Skomski R, Coey JMD. Giant energy product in nanostructured two-phase magnets. Phys Rev B 1993;48:15812–6. https://doi.org/10.1103/PhysRevB.48.15812. [CrossRef] [PubMed] [Google Scholar]
- Ruiz-Perez F, López-Estrada SM, Tolentino-Hernández RV, Caballero-Briones F. Carbon-based radar absorbing materials: A critical review. J Sci Adv Mater Devices 2022;7:100454. https://doi.org/10.1016/j.jsamd.2022.100454. [CrossRef] [Google Scholar]
- Matsui D, Prylutskyy Y, Matzui L, Zakharenko M, Le Normand F, Derory A. Magnetic properties of cobalt‐carbon nanocomposites. Phys Status Solidi C 2010;7:1264–8. https://doi.org/10.1002/pssc.200982963. [CrossRef] [Google Scholar]
- Liu M, Chen C, Hu J, Wu X, Wang X. Synthesis of Magnetite/Graphene Oxide Composite and Application for Cobalt(II) Removal. J Phys Chem C 2011;115:25234–40. https://doi.org/10.1021/jp208575m. [CrossRef] [Google Scholar]
- Saboori A, Moheimani SK, Dadkhah M, Pavese M, Badini C, Fino P. An overview of key challenges in the fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets. Metals (Basel) 2018;8. https://doi.org/10.3390/met8030172. [Google Scholar]
- Evans A, San Marchi C, Mortensen A. Metal Matrix Composites in Industry. Boston, MA: Springer US; 2003. https://doi.org/10.1007/978-1-4615-0405-4. [CrossRef] [Google Scholar]
- Cheng HM, Lin ZH, Zhou BL, Zhen ZG, Kobayashi K, Uchiyama Y. Preparation of carbon fibre reinforced aluminium via ultrasonic liquid infiltration technique. Mater Sci Technol 1993;9:609–14. https://doi.org/10.1179/mst.1993.9.7.609. [CrossRef] [Google Scholar]
- Verma V, Khvan A. A Short Review on Al MMC with Reinforcement Addition Effect on Their Mechanical and Wear Behaviour. Adv Compos Mater Dev 2019. https://doi.org/10.5772/intechopen.83584. [Google Scholar]
- Evans RW, Leatham AG, Brooks RG. The Osprey Preform Process. Powder Metall 1985;28:13–20. https://doi.org/10.1179/pom.1985.28.1.13. [CrossRef] [Google Scholar]
- Rosso M. Ceramic and metal matrix composites: Routes and properties. J Mater Process Technol 2006;175:364–75. https://doi.org/10.1016/j.jmatprotec.2005.04.038. [CrossRef] [Google Scholar]
- Barabanova OA, Mogorychnyi VO, Nabatchikov SV. Using diffusion bonding for producing laminated composite materials for the manufacture of highly efficient and compact heat exchange systems. Weld Int 2010;24:372–6. https://doi.org/10.1080/09507110903399240. [CrossRef] [Google Scholar]
- Pingale AD, Belgamwar SU, Rathore JS. A novel approach for facile synthesis of Cu-Ni/GNPs composites with excellent mechanical and tribological properties. Mater Sci Eng B 2020;260:114643. https://doi.org/10.1016/j.mseb.2020.114643. [CrossRef] [Google Scholar]
- Piras CC, Fernández-Prieto S, De Borggraeve WM. Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 2019;1:937–47. https://doi.org/10.1039/C8NA00238J. [CrossRef] [PubMed] [Google Scholar]
- Owhal A, Choudhary M, Belgamwar SU, Mukherjee S, Rathore JS. Co-deposited Zn-Cu/Gr nanocomposite: Corrosion behaviour and in-vitro cytotoxicity assessment. Trans IMF 2021;99:215–23. https://doi.org/10.1080/00202967.2021.1899493. [CrossRef] [Google Scholar]
- Owhal A, Pingale AD, Belgamwar SU, Rathore JS. Preparation of novel Zn/Gr MMC using a modified electro-co-deposition method: Microstructural and tribo-mechanical properties. Mater Today Proc 2021;44:222–8. https://doi.org/10.1016/j.matpr.2020.09.459. [CrossRef] [Google Scholar]
- Owhal A, Choudhary M, Pingale AD, Belgamwar SU, Mukherjee S, Rathore JS. Non-cytotoxic zinc/f-graphene nanocomposite for tunable degradation and superior tribo-mechanical properties: Synthesized via modified electro co-deposition route. Mater Today Commun 2023;34:105112. https://doi.org/10.1016/j.mtcomm.2022.105112. [CrossRef] [Google Scholar]
- Pandit S, Cao Z, Mokkapati VRSS, Celauro E, Yurgens A, Lovmar M, et al. Vertically Aligned Graphene Coating is Bactericidal and Prevents the Formation of Bacterial Biofilms. Adv Mater Interfaces 2018;5:1701331. https://doi.org/10.1002/admi.201701331. [CrossRef] [Google Scholar]
- Hussein MA, Ankah NK, Kumar AM, Azeem MA, Saravanan S, Sorour AA, et al. Mechanical, biocorrosion, and antibacterial properties of nanocrystalline TiN coating for orthopedic applications. Ceram Int 2020;46:18573–83. https://doi.org/10.1016/j.ceramint.2020.04.164. [CrossRef] [Google Scholar]
- Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, et al. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett 2010;10:1542–8. https://doi.org/10.1021/nl9037714. [CrossRef] [PubMed] [Google Scholar]
- Yuan X, Liu G, Jin H, Chen K. In situ synthesis of TiC reinforced metal matrix composite (MMC) coating by self propagating high temperature synthesis (SHS). J Alloys Compd 2011;509:L301–3. https://doi.org/10.1016/j.jallcom.2011.04.150. [CrossRef] [Google Scholar]
- Liu Y, Ding J, Qu W, Su Y, Yu Z. Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding. Materials (Basel) 2017;10:281. https://doi.org/10.3390/ma10030281. [CrossRef] [PubMed] [Google Scholar]
- Yli-Pentti A. Electroplating and Electroless Plating. Compr. Mater. Process., Elsevier; 2014, p. 277–306. https://doi.org/10.1016/B978-0-08-096532-1.00413-1. [CrossRef] [Google Scholar]
- Owhal A, Pingale AD, Khan S, Belgamwar SU, Jha PN, Rathore JS. Facile and Scalable Co-deposition of Anti-bacterial Zn-GNS Nanocomposite Coatings for Hospital Facilities: Tribo-Mechanical and Anti-corrosion Properties. JOM 2021;73:4270–8. https://doi.org/10.1007/s11837-021-04968-5. [CrossRef] [Google Scholar]
- Yandouzi M, Bu H, Brochu M, Jodoin B. Nanostructured Al-Based Metal Matrix Composite Coating Production by Pulsed Gas Dynamic Spraying Process. J Therm Spray Technol 2012;21:609–19. https://doi.org/10.1007/s11666-011-9727-9. [CrossRef] [Google Scholar]
- Deuis RL, Yellup JM, Subramanian C. Metal-matrix composite coatings by PTA surfacing. Compos Sci Technol 1998;58:299–309. https://doi.org/10.1016/S0266-3538(97)00131-0. [CrossRef] [Google Scholar]
- Yuan J, Zhu Y, Zheng X, Ji H, Yang T. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings. J Alloys Compd 2011;509:2576–81. https://doi.org/10.1016/j.jallcom.2010.11.093. [CrossRef] [Google Scholar]
- Nikiforov A, Deng X, Xiong Q, Cvelbar U, Degeyter N, Morent R, et al. Non-thermal plasma technology for the development of antimicrobial surfaces: A review. J Phys D Appl Phys 2016;49. https://doi.org/10.1088/0022-3727/49/20/204002. [Google Scholar]
- Marantz DR, David R, Keith A. High velocity electric-arc spray apparatus and method of forming mater als. US5442153, 1995. [Google Scholar]
- Marantz DR. High-velocity flame spray apparatus and method of forming materials. US5019686A, 1991. [Google Scholar]
- Shirvanimoghaddam K, Hamim SU, Karbalaei Akbari M, Fakhrhoseini SM, Khayyam H, Pakseresht AH, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos Part A Appl Sci Manuf 2017;92:70–96. https://doi.org/10.1016/j.compositesa.2016.10.032. [CrossRef] [Google Scholar]
- Newnham Re, Giniewicz Jr. Nonmechanical Properties of Composites. Compr. Compos. Mater., Elsevier; 2000, p. 431–63. https://doi.org/10.1016/B0-08-042993-9/00052-8. [CrossRef] [Google Scholar]
- Sharma S, Verma A, Kumar A, Kamyab H. Magnetic Nano-Сomposites and their Industrial Applications. Nano Hybrids Compos 2018;20:149–72. https://doi.org/10.4028/www.scientific.net/NHC.20.149. [CrossRef] [Google Scholar]
- Pingale AD, Owhal A, Belgamwar SU, Rathore JS. Effect of Current on the Characteristics of CuNi-G Nanocomposite Coatings Developed by DC, PC and PRC Electrodeposition. JOM 2021;73:4299–308. https://doi.org/10.1007/s11837-021-04815-7. [CrossRef] [Google Scholar]
- Mahltig B, Grethe T, Haase H. Handbook of Sol-Gel Science and Technology. Handb Sol-Gel Sci Technol 2017. https://doi.org/10.1007/978-3-319-19454-7. [Google Scholar]
- Fotovvati B, Namdari N, Dehghanghadikolaei A. On Coating Techniques for Surface Protection: A Review. J Manuf Mater Process 2019;3:28. https://doi.org/10.3390/jmmp3010028. [Google Scholar]
- Piszczek P, Radtke A. Silver Nanoparticles Fabricated Using Chemical Vapor Deposition and Atomic Layer Deposition Techniques: Properties, Applications and Perspectives: Review. Noble Precious Met. - Prop. Nanoscale Eff. Appl., InTech; 2018. https://doi.org/10.5772/intechopen.71571. [Google Scholar]
- Luo X, Chung DD. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos Part B Eng 1999;30:227–31. https://doi.org/10.1016/S1359-8368(98)00065-1. [CrossRef] [Google Scholar]
- Pisana S, Braganca PM, Marinero EE, Gurney BA. Graphene Magnetic Field Sensors. IEEE Trans Magn 2010;46:1910–3. https://doi.org/10.1109/TMAG.2010.2041048. [CrossRef] [Google Scholar]
- Jiang H-L, Xu Q. Porous metal-organic frameworks as platforms for functional applications. Chem Commun 2011;47:3351. https://doi.org/10.1039/c0cc05419d. [CrossRef] [PubMed] [Google Scholar]
- Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, et al. Mesoporous metal-organic frameworks: design and applications. Energy Environ Sci 2012;5:7508. https://doi.org/10.1039/c2ee03517k. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.