Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01097
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202455201097
Published online 23 July 2024
  1. Berardi, Umberto, and Gino Iannace. “Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant.” Applied Acoustics 115 (2017): 131–138. [CrossRef] [Google Scholar]
  2. Schmidt, Anders C., Allan A. Jensen, Anders U. Clausen, Ole Kamstrup, and Dennis Postlethwaite. “A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax: part 1 : background, goal and scope, life cycle inventory, impact assessment and interpretation.” The International Journal of Life Cycle Assessment 9 (2004): 53–66. [CrossRef] [Google Scholar]
  3. Desarnaulds, Victor, Ezilda Costanzo, António Carvalho, and Blaise Arlaud. “Sustainability of acoustic materials and acoustic characterization of sustainable materials.” In Proceedings of the 12th international congress on sound and vibration. 2005. [Google Scholar]
  4. Secchi, Simone. “Acoustic and thermal performances of building materials.” In 1st international workshop on sustainable materials for noise control, pp. 0–17. CIRIAF, 2005. [Google Scholar]
  5. D’Alessandro, Francesco, and Giulio Pispola. “Sound absorption properties of sustainable fibrous materials in an enhanced reverberation room.” In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 2005, no. 6, pp. 2209–2218. Institute of Noise Control Engineering, 2005. [Google Scholar]
  6. Pizzutti, Jorge L., Marco A. de Oliveira, and Getúlio Picada. “Acoustic potential of calabash residue as sound absorption alternative material.” In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 2005, no. 3, pp. 4451–4456. Institute of Noise Control Engineering, 2005. [Google Scholar]
  7. Hax, S. “Residues utilization from shoes industry in the acoustic Insulation in Buildings.” In Proc. of Internoise. 2000. [Google Scholar]
  8. Joshi, Satish V., L.T. Drzal, A.K. Mohanty, and S. Arora. “Are natural fiber composites environmentally superior to glass fiber reinforced composites?.” Composites Part A: Applied science and manufacturing 35, no. 3 (2004): 371–376. [CrossRef] [Google Scholar]
  9. Koizumi, Tsujiuchi, N. Tsujiuchi, and A. Adachi. “The development of sound absorbing materials using natural bamboo fibers.” WIT Transactions on The Built Environment 59 (2002): 157–166. [Google Scholar]
  10. Suzana, G. “EcoDesign in Noise Control: the Benefits, Acoustical Properties and Applications of Coconut Fiber.” Proc. of Euronoise, Naples, Italy (2003). [Google Scholar]
  11. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  12. Ramprasad, P., Basavapoornima, C., Depuru, S.R., & Jayasankar, C.K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  13. Goud, J.S., Srilatha, P., Kumar, R.V., Kumar, K.T., Khan, U., Raizah, Z., & & Galal, A.M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [CrossRef] [Google Scholar]
  14. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., & & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  15. Indira, D.N.V.S.L.S., Ganiya, R.K., Babu, P.A., Xavier, A.J., Kavisankar, L., Hemalatha, S., & & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  16. Pfretzschner, Jairne, and R. Ma Rodriguez. “Acoustic properties of rubber crumbs.” Polymer testing 18, no. 2 (1999): 81–92. [CrossRef] [Google Scholar]
  17. Rushforth, I.M., M.A. Swift, K.A. Horoshenkov, and M. Miraftab. “Acoustic damping properties of recycled carpet waste.” Proc. of Euronoise, Naples, Italy (2003). [Google Scholar]
  18. Girish, K.M., Naik, R., Prashantha, S.C., Nagabhushana, H., Nagaswarupa, H.P., Raju, K.A., & & Nagabhushana, B.M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  19. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M.V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  20. Girish, K.M., Prashantha, S.C., Nagabhushana, H., Ravikumar, C.R., Nagaswarupa, H.P., Naik, R., & & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  21. Naik, R., Prashantha, S.C., Nagabhushana, H., Sharma, S.C., Nagaswarupa, H.P., Anantharaju, K.S., & & Girish, K.M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd-Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  22. Rathod, V.P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  23. Palermo, Antonio, Matteo Vitali, and Alessandro Marzani. “Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation.” Soil Dynamics and Earthquake Engineering 113 (2018): 265–277. [Google Scholar]
  24. Liu, Zhengyou, Xixiang Zhang, Yiwei Mao, Y.Y. Zhu, Zhiyu Yang, Che Ting Chan, and Ping Sheng. “Locally resonant sonic materials.” science 289, no. 5485 (2000): 1734–1736. [CrossRef] [PubMed] [Google Scholar]
  25. Bilal, Osama R., and Mahmoud I. Hussein. “Trampoline metamaterial: Local resonance enhancement by springboards.” Applied Physics Letters 103, no. 11 (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.