Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01147
Number of page(s) 23
DOI https://doi.org/10.1051/e3sconf/202455201147
Published online 23 July 2024
  1. Machura P., Li Q. A critical review on wireless charging for electric vehicles. Renewable and Sustainable Energy Reviews. 2019 Apr 1; 104:209-34. [CrossRef] [Google Scholar]
  2. Y. Chao, “Autonomous underwater vehicles and sensors powered by ocean thermal energy,” OCEANS 2016-Shanghai, Shanghai, China, 2016, pp. 1–4,DOI: 10.1109/OCEANSAP.2016.7485367. [Google Scholar]
  3. S. Soni and S. Gupta, “WPT Techniques based Power Transmission: A State-of-Art Review,” 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2022, pp. 1–6,DOI: 10.1109/ICCCNT54827.2022.9984606. [Google Scholar]
  4. Sherali Zeadally, Farhan Siddiqui, and Zubair Baig. 25 years of bluetooth technology. Future Internet, 11(9), 9 2019. [CrossRef] [Google Scholar]
  5. I. Casaucao, A. Trivino and Z. Lin, “Simultaneous Wireless Power and Data Transfer for Electric Vehicle Charging: A Review,” in IEEE Transactions on Transportation Electrification,DOI: 10.1109/TTE.2023.3309505. [Google Scholar]
  6. Sherali Zeadally, Farhan Siddiqui, and Zubair Baig. 25 years of bluetooth technology. Future Internet, 11(9), 9 2019. [Google Scholar]
  7. Pedram Radmand, Marc Domingo, Jaipal Singh, Joan Arnedo, Alex Talevski, Stig Petersen, and Simon Carlsen. ZigBee/ZigBee PRO security assessment based on compromised cryptographic keys. In Proceedings-International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2010, 2010. [Google Scholar]
  8. Angela M. Lonzetta, Peter Cope, Joseph Campbell, Bassam J. Mohd, and Thaier Hayajneh. Security vulnerabilities in bluetooth technology as used in IoT, 2018 [Google Scholar]
  9. Pushpa R. Suri and Sona Rani. Bluetooth security-Need to increase the efficiency in pairing. In Conference Proceedings-IEEE South-Eastcon, 2008. [Google Scholar]
  10. Ratika Bali. Bluejacking Technology: Overview, Key Challenges and Initial Research. International Journal of Engineering Trends and Technology, 4(7), 2013. [Google Scholar]
  11. H. Zheng, Z. Wang, Y. Li and P. Deng, “Data transmission through energy coil of wireless power transfer system,” 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 2017, pp. 1–4, [Google Scholar]
  12. Ogbodo Emmanuel Utochukwu, Ifeyinwa Faith Ogbodo, Onyenanu Chukwunonso Nnanyelum, & Nwanonobi Benjamin Chibuzo. (2023). “Electromagnetic Induction Technique of Wireless Power Transfer for Universal Wireless Charging Device”. International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE), 10(3), 10-21. [Google Scholar]
  13. Alicia Trivino, Jose M. Gonz’alez-Gonz’alez, and Jos’e A. Aguado. ’ Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies, 14(6), 2021. [Google Scholar]
  14. Jongeun Byun, Won-Jin Son, Jae Han Lee, Sangjoon Ann, and Byoung Kuk Lee. Current sensorless ZPA frequency tracking control of IPT system with LCCL-S topology. In 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), pages 1-6, 2019. [Google Scholar]
  15. Riccardo Ruffo, Vincenzo Cirimele, Michela Diana, Mojtaba Khalilian, Alessandro La Ganga, and Paolo Guglielmi. Sensorless control of the charging process of a dynamic inductive power transfer system with an interleaved nine-phase boost converter. IEEE Transactions on Industrial Electronics, 65(10):7630-7639, 2018. [CrossRef] [Google Scholar]
  16. Paul-Antoine Gori, Daniel Sadarnac, Antoine Caillierez, and Serge Loudot. Sensorless inductive power transfer system for electric vehicles: Strategy and control for automatic dynamic operation. In 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), pages P.1–P.10, 2017. [Google Scholar]
  17. Y. Zhao, Y. Du, Z. Wang, J. Wang and Y. Geng, “Design of Ultrasonic Transducer Structure for Underwater Wireless Power Transfer System,” 2021 IEEE Wireless Power Transfer Conference (WPTC), San Diego, CA, USA, 2021, pp. 1–4, [Google Scholar]
  18. Chen Anlan, Shao Xuming, Quan Xiangjun, “Hardware Design of Micro PV-Battery System for Underwater Wireless Power Supply”, 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), pp. 3928–3932, 2023. [CrossRef] [Google Scholar]
  19. Anwar Khan, Muhammad Imran, Abdullah Alharbi, Ehab Mahmoud Mohamed, Mostafa M. Fouda, “Energy Harvesting in Underwater Acoustic Wireless Sensor Networks: Design, Taxonomy, Applications, Challenges and Future Directions”, IEEE Access, vol.10, pp. 134606–134622, 2022. [CrossRef] [Google Scholar]
  20. Q. Wang, W. Che, M. Mongiardo and G. Monti, “Wireless Power Transfer System With High Misalignment Tolerance for Bio-Medical Implants,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3023–3027, Dec. 2020,DOI: 10.1109/TCSII.2020.2985056. [Google Scholar]
  21. G. Sun, B. Muneer, Y. Li and Q. Zhu, “Ultracompact implantable design with integrated wireless power transfer and RF transmission capabilities”, IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 281–291, Apr. 2018. [Google Scholar]
  22. S. Gabriel, R.W. Lau and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues”, Phys. Med. Biol., vol. 41, no. 11, pp. 2271, 1996. [Google Scholar]
  23. G. Monti, P. Arcuti and L. Tarricone, “Resonant inductive link for remote powering of pacemakers”, IEEE Trans. Microw. Theory Techn., vol. 63, no. 11, pp. 3814–3822, Nov. 2015. [Google Scholar]
  24. P.B. Bobba, M.H. Anwar, S.P. Yadav and D.S. Rao, “Effect of Coil Geometry and Dimensions on the Performance of Wireless Power Transfer in AUV Application,” 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Bhubaneswar, India, 2023, pp. 1–7, [Google Scholar]
  25. Xin Liu, Xijun Yang, DIanguang Ma, Nan Jin, Xiaoyang Lai, and Houjun Tang. A Novel Simultaneous Wireless Information and Power Transfer System. In 2019 IEEE Wireless Power Transfer Conference, WPTC 2019, 2019. [Google Scholar]
  26. iande Wu Chongwen Zhao. Zhengyu Lin, Jin Du, Yihua Hu, and Xiangning He. Wireless Power and Data Transfer via a Common Inductive Link Using Frequency Division Multiplexing. IEEE Transactions on Industrial Electronics, 62(12), 2015. [Google Scholar]
  27. Yanling Li, Xiaofei Li, and Xin Dai. A Simultaneous Wireless Power and Data Transmission Method for Multi-Output WPT Systems: Analysis, Design, and Experimental Verification. IEEE Access, 8, 2020. [Google Scholar]
  28. Varun, Alapati & Nadella, Indusaiteja & Bobba, Phaneendra & Upadhayay, Madhur. (2019). Development of wireless charging system along with power line communication used in Electric Vehicles. 10.1051/e3sconf/20198700001. [Google Scholar]
  29. Jie Wu, Chongyan Zhao, Nan Jin, Shuaibiao He, and Dianguang Ma. Bidirectional information transmission in SWIPT system with single controlled chopper receiver. Electronics (Switzerland), 8(9), 2019 [Google Scholar]
  30. Tao Zhang, Deqi Zhang, and Wenbin Huang. Research on Inductively Coupled Full Duplex Communication Method with Power Transmission. In International Conference on Sensing, Measurement and Data Analytics in the Era of Artificial Intelligence, ICSMD 2020-Proceedings, 2020. [Google Scholar]
  31. Yongzhi Jing, Wei Feng, Ke Qiao, Liangtao Yang, Sen Wang, and Linhai Lu. Simultaneous wireless power and data transfer system with full-duplex mode based on lcc/clc resonant network. IEEE Transactions on Power Electronics, 38(4):5549-5560, 2023. [CrossRef] [Google Scholar]
  32. Wireless Power and Data Transfer via a Common Inductive Link Using Frequency Division Multiplexing Jiande Wu, Member, IEEE, Chongwen Zhao, Student Member, IEEE, Zhengyu Lin, Senior Member, IEEE, Jin Du, Student Member, IEEE, Yihua Hu, Member, IEEE, and Xiangning He, Fellow, IEEE [Google Scholar]
  33. Yang, Lei & Huang, Jingjing & Feng, Baoxiang & Zhang, Feng & Zhang, Yuanqi & Li, Xaojie & Jian, Jiale & Wang, Zhe & Tong, Xiangqian. (2022). Undersea Wireless Power and Data Transfer System With Shared Channel Powered by Marine Renewable Energy System. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. PP. 1-1. 10.1109/JETCAS.2022.3140954. [Google Scholar]
  34. A.I. Al-Kalbani, M.R. Yuce and J.-M. Redoute, “Design Methodology for Maximum Power Transmission, Optimal BER-SNR and Data Rate in Biomedical Implants,” in IEEE Communications Letters, vol. 17, no. 10, pp. 1897–1900, October 2013,DOI: 10.1109/LCOMM.2013.13.131505. [CrossRef] [Google Scholar]
  35. G. Simard, M. Sawan and D. Massicotte, “High-Speed OQPSK and Efficient Power Transfer Through Inductive Link for Biomedical Implants,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 192–200, June 2010,DOI: 10.1109/TBCAS.2009.2039212. [CrossRef] [PubMed] [Google Scholar]
  36. Guo Wei, Jing Feng, Jing Yang Zhang, Chao Wang, Chunbo Zhu, and Sergei Yurievich Ostanin. An Efficient Power and Data Synchronous Transfer Method for WPT System Using Double-D Coupling Coil. IEEE Transactions on Industrial Electronics, 2020. [Google Scholar]
  37. Yusheng Sun, Li Yuegong, Jie Wu, Pengfei Gao, Nan Jin, Kai Feng, and Hengyi Zhang. Bidirectional simultaneous wireless information and power transfer via sharing inductive link and single switch in the secondary side. IEEE Access, 8, 2020 [Google Scholar]
  38. S. Barmada, M. Raugi and M. Tucci, “Power line communication integrated in a Wireless Power Transfer system: A feasibility study,” 18th IEEE International Symposium on Power Line Communications and Its Applications, Glasgow, UK, 2014, pp. 116–120,DOI: 10.1109/ISPLC.2014.6812357. [Google Scholar]
  39. Z. Qian, R. Yan, J. Wu and X. He, “Full-Duplex High-Speed Simultaneous Communication Technology for Wireless EV Charging,” in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9369–9373, Oct. 2019,DOI: 10.1109/TPEL.2019.2909303. [CrossRef] [Google Scholar]
  40. X. Li, C. Tang, X. Dai, P. Deng and Y. Su, “An Inductive and Capacitive Combined Parallel Transmission of Power and Data for Wireless Power Transfer Systems,” in IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 4980–4991, June 2018,DOI: 10.1109/TPEL.2017.2725990 [CrossRef] [Google Scholar]
  41. C. Da, L. Wang, F. Li, R. Zhang, Y. Zhang and C. Tao, “Analysis of Simultaneous Wireless Power and High-Speed Data Transfer System Based on ASK Modulation,” 2023 IEEE Wireless Power Technology Conference and Expo (WPTCE), San Diego, CA, USA, 2023, pp. 1–5,DOI: 10.1109/WPTCE56855.2023.10215788. [Google Scholar]
  42. G. Wei, J. Feng, J. Zhang, C. Wang, C. Zhu and S. Yurievich Ostanin, “An Efficient Power and Data Synchronous Transfer Method for Wireless Power Transfer System Using Double-D Coupling Coil,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10643–10653, Nov. 2021,DOI: 10.1109/TIE.2020.3038081. [CrossRef] [Google Scholar]
  43. Y. Yao, H. Cheng, Y. Wang, J. Mai, K. Lu and D. Xu, “An FDM-Based Simultaneous Wireless Power and Data Transfer System Functioning With High-Rate Full-Duplex Communication,” in IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6370–6381, Oct. 2020,DOI: 10.1109/TII.2020.2967023. [CrossRef] [Google Scholar]
  44. M. Zeng, Y. Wang, Z. Lang, T. Li, J. Mai and D. Xu, “A Simultaneous Wireless Power Transfer and Data Transfer System With High Misalignment Tolerance,” 2022 IEEE Industrial Electronics and Applications Conference (IEACon), Kuala Lumpur, Malaysia, 2022, pp. 25–30,DOI: 10.1109/IEACon55029.2022.9951780. [CrossRef] [Google Scholar]
  45. Y. Fan, Y. Sun, P. Deng, H. Hu, C. Jiang and Y. Feng, “A Simultaneous Wireless Power and High-Rate Data Transfer System Based on Transient Responses Regulation,” in IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9362–9366, Aug. 2023,DOI: 10.1109/TPEL.2023.3278749. [CrossRef] [Google Scholar]
  46. S. Ozeri and O. Amrani, “Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 1, pp. 199–207, Jan. 2022,DOI: 10.1109/TUFFC.2021.3118722. [CrossRef] [PubMed] [Google Scholar]
  47. A.N.M. Shahriyar Hossain, P. Mohseni and H.M. Lavasani, “A Resonant Capacitive Wireless Power and Data Transfer Link with 52% PTE and 6.5 Mbps Data Rate for Biomedical Implants,” 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 2022, pp. 292–296,DOI: 10.1109/BioCAS54905.2022.9948595. [CrossRef] [Google Scholar]
  48. G. Simard, M. Sawan and D. Massicotte, “High-Speed OQPSK and Efficient Power Transfer Through Inductive Link for Biomedical Implants,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 192–200, June 2010,DOI: 10.1109/TBCAS.2009.2039212. [CrossRef] [PubMed] [Google Scholar]
  49. X. Ma and S. Mai, “Narrowband FSK Transceiver Circuit for Wireless Power and Data Transmission in Biomedical Implants,” 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 152–155,DOI: 10.1109/ISCAS48785.2022.9937407. [CrossRef] [Google Scholar]
  50. L.H. Jung, P. Byrnes-Preston, R. Hessler, T. Lehmann, G.J. Suaning and N.H. Lovell, “A Dual Band Wireless Power and FSK Data Telemetry for Biomedical Implants,” 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007, pp. 6596–6599,DOI: 10.1109/IEMBS.2007.4353871. [Google Scholar]
  51. A. Liu, Q. Wang, W. Qi and S. Mai, “A Dual Resonant Frequencies Tuning Circuit Based on FSK Modulation for Wireless Power and Data Transmission in Medical Implants,” 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 2022, pp. 515–518,DOI: 10.1109/BioCAS54905.2022.9948697. [CrossRef] [Google Scholar]
  52. M. Ogihara, T. Ebihara, K. Mizutani and N. Wakatsuki, “Wireless power and data transfer system for station-based autonomous underwater vehicles,” OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 2015, pp. 1–5,DOI: 10.23919/OCEANS.2015.7404400. [Google Scholar]
  53. Y. Zeng, C. Lu, R. Liu, X. He, C. Rong and M. Liu, “Wireless Power and Data Transfer System Using Multidirectional Magnetic Coupler for Swarm AUVs,” in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1440–1444, Feb. 2023,DOI: 10.1109/TPEL.2022.3214318. [CrossRef] [Google Scholar]
  54. C. Cai, J. Li, S. Wu, Z. Qin, W. Chai and S. Yang, “A Bipolar and Unipolar Magnetic Channel Multiplexed WPT System With Simultaneous Full-Duplex Communication for Autonomous Underwater Vehicles,” in IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 15086–15090, Dec. 2023, [CrossRef] [Google Scholar]
  55. Y. Wang, T. Li, M. Zeng, J. Mai, P. Gu and D. Xu, “An Underwater Simultaneous Wireless Power and Data Transfer System for AUV With High-Rate Full-Duplex Communication,” in IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 619–633, Jan. 2023,DOI: 10.1109/TPEL.2022.3203038. [CrossRef] [Google Scholar]
  56. C. Da, L. Wang, F. Li, C. Tao and Y. Zhang, “Analysis of Undersea Simultaneous Wireless Power and 1 Mb/s Data Rate Transfer System Based on DDQ Coil,” in IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 11814–11825, Oct. 2023,DOI: 10.1109/TPEL.2023.3290162. [CrossRef] [Google Scholar]
  57. Detka, Kalina, and Krzysztof Görecki. 2022. “Wireless Power Transfer—A Review” Energies 15, no. 19: 7236. https://doi.org/10.3390/en1519723. [CrossRef] [Google Scholar]
  58. Alicia Trivino-Cabrera, Zhengyu Lin, and Jose A. Aguado. Impact of ’ coil misalignment in data transmission over the inductive link of an EV wireless charger. Energies, 11(3), 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.