Open Access
Issue
E3S Web of Conf.
Volume 553, 2024
2024 International Conference on Ecological Protection and Environmental Chemistry (EPEC 2024)
Article Number 04004
Number of page(s) 4
Section Advanced Technologies and Applications
DOI https://doi.org/10.1051/e3sconf/202455304004
Published online 24 July 2024
  1. K.C. Seto, M. Fragkias, B. Güneralp, MK. Reilly , PLOS ONE 6(8): e23777, (2011). [CrossRef] [Google Scholar]
  2. T. Adão, J. Hru š ka, L. P á dua, J. Bessa, E. Peres, R. Morais, J. Sousa,Remote Sens., 9 , 1110 (2017). [CrossRef] [Google Scholar]
  3. J. Bian, D. Tian, Y. Tang, D. Tao,Intell. Syst. Technol. 10, 4, Article 33, 34 , (2019). [Google Scholar]
  4. J. Yin, P. Fu, A. S. H. Nicholas, Z. Li, N. You, Y. He, A, Geospatial Big Data for Urban Land Use Mapping, Remote Sensing 13, 8: 1579, (2021). [Google Scholar]
  5. R.T Ilieva.,T. McPhearson, Social-media data for urban sustainability. Nat. Sustain., 1, 553–565(2018) [Google Scholar]
  6. V. Krylov, E. Kenny, E. Dahyot, Remote Sens, 10, 661, (2018). [CrossRef] [Google Scholar]
  7. S. Srivastava, ;z, J.E.V. Muñ., S. Lobry,D. Tuia, Int. J. Geogr. Inf. Sci. 34, 1117–1136, (2018). [Google Scholar]
  8. V. Krylov.; Kenny, E.; Dahyot, R. ,Remote Sens, 10, 661, (2018). [Google Scholar]
  9. X. Zhang, S. Du and Q. Wang, “Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data”, ISPRS-J. Photogrammetry Remote Sens., 132, 170-184, (2017). [CrossRef] [Google Scholar]
  10. F. Zhang, B. Du and L. Zhang, “Scene classification via a gradient boosting random convolutional network framework”, IEEE Trans. Geosci. Remote Sens., 54, 3, 1793-1802, (2016). [CrossRef] [Google Scholar]
  11. Y. Zhong, F. Fei and L. Zhang, “Large patch convolutional neural networks for the scene classification of high spatial resolution imagery”, J. Appl. Remote Sens., 10, 2, (2016). [Google Scholar]
  12. Q. Wang, S. Liu, J. Chanussot and X. Li, “Scene classification with recurrent attention of VHR remote sensing images”, IEEE Trans. Geosci. Remote Sens., 57, 2, 1155-1167, (2019). [CrossRef] [Google Scholar]
  13. H. Wang, Y. Miao, H. Wang and B. Zhang, Remote Sens. Lett., 16, 4, 643-647, (2019). [CrossRef] [Google Scholar]
  14. Y. Gao, J. Shi, J. Li and R. Wang, “Remote sensing scene classification with dual attention-aware network”, Proc. IEEE 5th Int. Conf. Image Vis. Comput. (ICIVC), 171-175, (2020). [Google Scholar]
  15. A. S. Alswayed, H. S. Alhichri and Y. Bazi, “SqueezeNet with attention for remote sensing scene classification”, Proc. 3rd Int. Conf. Comput. Appl. Inf. Secur. (ICCAIS), 1-4, (2020). [Google Scholar]
  16. J. Huang, H. Obracht-Prondzynska, D. Kamrowska-Zaluska, Y. Sun, L. Li, The image of the City on social media: A comparative study using “Big Data” and “Small Data” methods in the Tri-City Region in Poland, Landscape and Urban Planning, 206, 103977, (2021). [CrossRef] [Google Scholar]
  17. S.M. Khan, M. Chowdhury, L.B. Ngo, A. Apon, Multi-class twitter data categorization and geocoding with a novel computing framework, Cities, 96, 102410, (2020). [Google Scholar]
  18. F. Terroso-Saenz, Expert Systems with Applications, 140, 112892, (2020). [CrossRef] [Google Scholar]
  19. G. Pan, G. Qi, Z. Wu, D. Zhang and S. Li, “Land-Use Classification Using Taxi GPS Traces”, in IEEE Transactions on Intelligent Transportation Systems, 14, 1, 113-123, (2013). [CrossRef] [Google Scholar]
  20. Z.Shao, N.S. Sumari, A. Portnov, F.Ujoh, W, Geo-spatial Information Science, 24: 2, 241-255, (2021). [CrossRef] [Google Scholar]
  21. R. Cao, W. Tu, C. Yang, Q. Li, J. Liu, J. Zhu, Q. Zhang, Q. Li, G. Qiu,ISPRS Journal of Photogrammetry and Remote Sensing, 163, 82-97, (2020). [CrossRef] [Google Scholar]
  22. S.i Du, S. Du, B. Liu, X. Zhang , Z. Zheng, GIScien ce & Remote Sensing, 57: 3, 411-430, (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.