Open Access
Issue
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
Article Number 01001
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202455601001
Published online 09 August 2024
  1. Malik M, Girotra S, Roy D, Basu S. Knowledge of hiv/aids and its determinants in india: findings from the national family health survey-5 (2019-2021). Population medicine. 2023 may 6;5(may):1–2. [CrossRef] [Google Scholar]
  2. Rambaut A, Posada D, Crandall Ka, Holmes Ec. The causes and consequences of hiv evolution. Nature reviews genetics. 2004 jan 1;5(1):52–61. [CrossRef] [PubMed] [Google Scholar]
  3. Bekker LG, Beyrer C, Mgodi N, Lewin Sr, Delany-Moretlwe S, Taiwo B, Masters Mc, Lazarus Jv. Hiv Infection. Nature reviews disease primers. 2023 aug 17;9(1):42. [CrossRef] [Google Scholar]
  4. Wilson Nl, Azuero A, Vance De, Richman Js, Moneyham Ld, Raper Jl, Heath Sl, Kempf Mc. Identifying symptom patterns in people living with hiv disease. Journal of the association of nurses in aids care. 2016 mar 1;27(2):121–32. [CrossRef] [PubMed] [Google Scholar]
  5. Zernentsch S. Gay families in the media in the age of hiv and aids (doctoral dissertation, concordia university). [Google Scholar]
  6. Sharma, M., & Saravolatz, L.D. (2013). Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor. Journal of antimicrobial chemotherapy, 68(2), 250–256. [CrossRef] [PubMed] [Google Scholar]
  7. Sanford M. Rilpivirine. Drugs. 2012 mar;72:525–41. [CrossRef] [PubMed] [Google Scholar]
  8. Singh K, Marchand B, Rai Dk, Sharma B, Michailidis E, Ryan Em, Matzek Kb, Leslie Md, Hagedorn An, Li Z, Norden Pr. Biochemical mechanism of hiv-1 resistance to rilpivirine. Journal of biological chemistry. 2012 nov 2;287(45):38110–23. [CrossRef] [Google Scholar]
  9. Reddy As, Pati Sp, Kumar Pp, Pradeep Hn, Sastry Gn. Virtual screening in drug discovery-a computational perspective. Current protein and peptide science. 2007 aug 1;8(4):329–51. [CrossRef] [Google Scholar]
  10. Kumar A, Shanthi V, Ramanathan K. Discovery of potential alk inhibitors by virtual screening approach. 3 biotech. 2016 jun;6:1–2. [CrossRef] [PubMed] [Google Scholar]
  11. El Aissouq A, Chedadi O, Bouachrine M, Ouammou A. Identification of novel sars-cov-2 inhibitors: a structure-based virtual screening approach. Journal of chemistry. 2021 feb 8;2021:1–7. [CrossRef] [Google Scholar]
  12. Singh S, Kancharla S, Kolli P, Mandadapu G, Jena Mk. In silico exploration of phytochemicals as potential drug candidates against dipeptidyl peptidase-4 target for the treatment of type 2 diabetes. Biomedical and biotechnology research journal (bbrj). 2023 oct 1;7(4):598–607. [CrossRef] [Google Scholar]
  13. Lade Jm, Avery Lb, Bumpus Nn. Human biotransformation of the nonnucleoside reverse transcriptase inhibitor rilpivirine and a cross-species metabolism comparison. Antimicrobial agents and chemotherapy. 2013 oct;57(10):5067–79. [CrossRef] [PubMed] [Google Scholar]
  14. Kim S. Getting the most out of pubchem for virtual screening. Expert opinion on drug discovery. 2016 sep 1;11(9):843–55. [CrossRef] [PubMed] [Google Scholar]
  15. Sadowski J, Schwab Ch, Gasteiger J. 3d structure generator. [Google Scholar]
  16. Lin Y, Zhang Y, Wang D, Yang B, Shen Yq. Computer especially ai-assisted drug virtual screening and design in traditional chinese medicine. Phytomedicine. 2022 dec 1;107:154481. [CrossRef] [Google Scholar]
  17. Da Silva Rocha Sf, Olanda Cg, Fokoue Hh, Sant'anna Cm. Virtual screening techniques in drug discovery: review and recent applications. Current topics in medicinal chemistry. 2019 jul 1;19(19):1751–67. [Google Scholar]
  18. Pan R, Hogdal Lj, Benito Jm, Bucci D, Han L, Borthakur G, Cortes J, Deangelo Dj, Debose L, Mu H, Döhner H. Selective bcl-2 inhibition by abt-199 causes on-target cell death in acute myeloid leukemia. Cancer discovery. 2014 mar 1;4(3):362–75. [CrossRef] [PubMed] [Google Scholar]
  19. Schindler T, Bornmann W, Pellicena P, Miller Wt, Clarkson B, Kuriyan J. Structural mechanism for sti-571 inhibition of abelson tyrosine kinase. Science. 2000 sep 15;289(5486):1938–42. [CrossRef] [PubMed] [Google Scholar]
  20. Daina A, Michielin O, Zoete V. Swissadme: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017 mar 3;7(1):42717. [CrossRef] [Google Scholar]
  21. Daina A, Michielin O, Zoete V. Swisstargetprediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic acids research. 2019 jul 2;47(w1):w357–64. [Google Scholar]
  22. Lipinski Ca, Lombardo F, Dominy Bw, Feeney Pj. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 1997 jan 15;23(1-3):3–25. [CrossRef] [Google Scholar]
  23. Sander T, Freyss J, Von Korff M, Reich Jr, Rufener C. Osiris, an entirely in-house developed drug discovery informatics system. Journal of chemical information and modeling. 2009 feb 23;49(2):232–46. [CrossRef] [PubMed] [Google Scholar]
  24. Meng Xy, Zhang Hx, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design. 2011 jun 1;7(2):146–57. [CrossRef] [Google Scholar]
  25. Yan Y, Tao H, He J, Huang Sy. The hdock server for integrated protein-protein docking. Nature protocols. 2020 may;15(5):1829–52. [CrossRef] [PubMed] [Google Scholar]
  26. Young Rj. Physical properties in drug design. Tactics in contemporary drug design. 2015:1–68. [Google Scholar]
  27. Morris Gm, Lim-Wilby M. Molecular docking. Molecular modeling of proteins. 2008:365–82. [CrossRef] [PubMed] [Google Scholar]
  28. Karplus M, Petsko Ga. Molecular dynamics simulations in biology. Nature. 1990 oct 18;347(6294):631–9. [CrossRef] [PubMed] [Google Scholar]
  29. Zhang Y, Skolnick J. Tm-Align: a protein structure alignment algorithm based on the tm-score. Nucleic acids research. 2005 jan 1;33(7):2302–9. [CrossRef] [Google Scholar]
  30. Sharma M, Bansal A, Suman S, Sharma Nr. Potential alphavirus inhibitors from phytocompounds-molecular docking and dynamics based approach. [Google Scholar]
  31. Vlietinck Aj, De Bruyne T, Apers S, Pieters La. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (hiv) infection. Planta medica. 1998 mar;64(02):97–109. [CrossRef] [PubMed] [Google Scholar]
  32. Shkoor M, Mehanna H, Shabana A, Farhat T, Bani-Yaseen Ad. Experimental and dft/td-dft computational investigations of the solvent effect on the spectral properties of nitro substituted pyridino [3, 4-c] coumarins. Journal of molecular liquids. 2020 sep 1;313:113509. [CrossRef] [Google Scholar]
  33. Singh S, Kancharla S, Kolli P, Mandadapu G, Jena Mk. In silico exploration of phytochemicals as potential drug candidates against dipeptidyl peptidase-4 target for the treatment of type 2 diabetes. Biomedical and biotechnology research journal (bbrj). 2023 oct 1;7(4):598–607. [CrossRef] [Google Scholar]
  34. Mori M, Ciaco S, Mély Y, Karioti A. Inhibitory effect of lithospermic acid on the hiv-1 nucleocapsid protein. Molecules. 2020 nov 20;25(22):5434. [CrossRef] [Google Scholar]
  35. Kaur R, Sharma P, Gupta Gk, Ntie-Kang F, Kumar D. Structure-activity-relationship and mechanistic insights for anti-hiv natural products. Molecules. 2020 apr 29;25(9):2070. [CrossRef] [Google Scholar]
  36. Behbahani M. Evaluation of anti-hiv-1 activity of a new iridoid glycoside isolated from avicenna marina, in vitro. International immunopharmacology. 2014 nov 1;23(1):262–6. [CrossRef] [Google Scholar]
  37. Bringmann G, Steinert C, Feineis D, Mudogo V, Betzin J, Scheller C. Hiv-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the central african liana ancistrocladuscongolensis. Phytochemistry. 2016 aug 1;128:71–81. [CrossRef] [Google Scholar]
  38. Li Hy, Sun Nj, Kashiwada Y, Sun L, Snider Jv, Cosentino Lm, Lee Kh. Anti-aids agents, 9. Suberosol, a new c31 lanostane-type triterpene and anti-hiv principle from polyalthiasuberosa. Journal of natural products. 1993 jul;56(7):1130–3. [CrossRef] [PubMed] [Google Scholar]
  39. Hasegawa H, Matsumiya S, Uchiyama M, Kurokawa T, Inouye Y, Kasai R, Ishibashi S, Yamasaki K. Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic and antiviral activities. Planta medica. 1994 jun;60(03):240–3. [CrossRef] [PubMed] [Google Scholar]
  40. Kato T, Horie N, Matsuta T, Shimoyama T, Kaneko T, Kanamoto T, Terakubo S, Nakashima H, Kusama K, Sakagami H. Anti-uv/hiv activity of kampo medicines and constituent plant extracts. In vivo. 2012 nov 1;26(6):1007–13. [Google Scholar]
  41. Wang Q, Ding Zh, Liu Jk, Zheng Yt. Xanthohumol, a novel anti-hiv-1 agent purified from hops humulus lupulus. Antiviral research. 2004 dec 1;64(3):189–94. [Google Scholar]
  42. Hsieh Pw, Chang Fr, Lee Kh, Hwang Tl, Chang Sm, Wu Yc. A new anti-hiv alkaloid, drymaritin, and a new cglycoside flavonoid, diandraflavone, from drymaria d iandra. Journal of natural products. 2004 jul 23;67(7):1175–7. [CrossRef] [PubMed] [Google Scholar]
  43. Gökalp F. The inhibition effect of garlic‐derived compounds on human immunodeficiency virus type 1 and saquinavir. Journal of biochemical and molecular toxicology. 2018 nov;32(11):e22215. [CrossRef] [PubMed] [Google Scholar]
  44. Laure F, Raharivelomanana P, Butaud Jf, Bianchini Jp, Gaydou Em. Screening of anti-hiv-1 inophyllums by hplc-dad of calophylluminophyllum leaf extracts from french polynesia islands. Analyticachimica acta. 2008 aug 22;624(1):147–53. [Google Scholar]
  45. Zhou P, Takaishi Y, Duan H, Chen B, Honda G, Itoh M, Takeda Y, Kodzhimatov Ok, Lee Kh. Coumarins and bicoumarin from ferulasumbul: anti-hiv activity and inhibition of cytokine release. Phytochemistry. 2000 mar 8;53(6):689–97. [CrossRef] [Google Scholar]
  46. Kashiwada Y, Wang Hk, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino Lm, Kozuka M, Okabe H, Ikeshiro Y. Anti-aids agents. 30. Anti-hiv activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. Journal of natural products. 1998 sep 25;61(9):1090–5. [CrossRef] [PubMed] [Google Scholar]
  47. Vlietinck Aj, De Bruyne T, Apers S, Pieters La. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (hiv) infection. Planta medica. 1998 mar;64(02):97–109. [CrossRef] [PubMed] [Google Scholar]
  48. Min Bs, Bae Kh, Kim Yh, Shimotohno K, Miyashiro H, Hattori M. Inhibitory activities of korean plants on hiv-1 protease. Natural product sciences. 1998;4(4):241–4. [Google Scholar]
  49. Sousa F.S, Mfsa Cerqueira N, Fernandes A.P, Joao Ramos M. Virtual screening in drug design and development. Combinatorial chemistry & high throughput screening. 2010 jun 1;13(5):442–53. [CrossRef] [Google Scholar]
  50. Kumar A, Mahajan A, Khajuria K, Singh M, Singh M. Management of gefitinib resistance in lung cancer utilizing virtual screening techniques. Inaip conference proceedings 2024 feb 20 (vol. 2986, no. 1). Aip publishing. [Google Scholar]
  51. M. Masud et al., "A lightweight and robust secure key establishment protocol for internet of medical things in covid-19 patients care," Ieee internet of things journal, article vol. 8, no. 21, pp. 15694–15703, 2021, doi: 10.1109/jiot.2020.3047662. [CrossRef] [PubMed] [Google Scholar]
  52. K. Pradhan And P. Chawla, "Medical internet of things using machine learning algorithms for lung cancer detection," Journal of management analytics, review vol. 7, no. 4, pp. 591–623, 2020, doi: 10.1080/23270012.2020.1811789. [CrossRef] [Google Scholar]
  53. S. Pradhan, S. Singh, C. Prakash, G. Królczyk, A. Pramanik, and C.I. Pruncu, "investigation of machining characteristics of hard-to-machine ti-6al-4v-eli alloy for biomedical applications," journal of materials research and technology, article vol. 8, no. 5, pp. 4849–4862, 2019, doi: 10.1016/j.jmrt.2019.08.033. [CrossRef] [Google Scholar]
  54. A. Sharma, Sarishma, R. Tomar, N. Chilamkurti, And B. G. Kim, "blockchain based smart contracts for internet of medical things in e-healthcare," electronics (switzerland), article vol. 9, no. 10, pp. 1–14, 2020, art no. 1609, doi: 10.3390/electronics9101609. [Google Scholar]
  55. D. Sharma And B. S. Saharan, "functional characterization of biomedical potential of biosurfactant produced by lactobacillus helveticus," biotechnology reports, article vol. 11, pp. 27–35, 2016, doi: 10.1016/j.btre.2016.05.001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.