Open Access
Issue
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
Article Number 01005
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202455601005
Published online 09 August 2024
  1. “Github -Spmohanty/Plantvillage-Dataset: Dataset Of Diseased Plant Leaf Images And Corresponding Labels.” Accessed: mar. 26, 2024. [online]. Available: https://github.com/spmohanty/plantvillage-dataset [Google Scholar]
  2. H. Arid, I. Bellamine, And A. Elmoutaouakkil, “plant leaf diseases classification using deep learning,” in 2023 7th ieee congress on information science and technology (cist), ieee, dec. 2023, pp. 166–170. DOI: 10.1109/cist56084.2023.10410019. [CrossRef] [Google Scholar]
  3. S. D. Deb, R. K. Jha, And S. Kumar, “convplant-net: a convolutional neural network based architecture for leaf disease detection in smart agriculture,” in 2023 national conference on communications (ncc), ieee, feb. 2023, pp. 1–6. DOI: 10.1109/ncc56989.2023.10067920. [Google Scholar]
  4. S. M. Hassan And A. K. Maji, “plant disease identification using a novel convolutional neural network,” ieee access, vol. 10, pp. 5390–5401, 2022, DOI: 10.1109/access.2022.3141371. [CrossRef] [Google Scholar]
  5. S. Vaidya, S. Kavthekar, And A. Joshi, “leveraging yolov7 for plant disease detection,” in 2023 4th international conference on innovative trends in information technology (icitiit), ieee, feb. 2023, pp. 1–6. DOI: 10.1109/icitiit57246.2023.10068590. [Google Scholar]
  6. D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, And N. Batra, “plantdoc: a dataset for visual plant disease detection,” acm international conference proceeding series, pp. 249–253, jan. 2020, DOI: 10.1145/3371158.3371196. [Google Scholar]
  7. T. Samson Adekunle, M. Oladayo Lawrence, O. Omotayo Alabi, A. A. Afolorunso, G. Nse Ebong, and M. Abiola Oladipupo, “deep learning technique for plant disease detection,” computer science and information technologies, vol. 5, no. 1, pp. 49–56, mar. 2024, DOI: 10.11591/csit.v5i1.p49-56. [CrossRef] [Google Scholar]
  8. M. H. K. Mehedi et al., “plant leaf disease detection using transfer learning and explainable ai,” 2022 ieee 13th annual information technology, electronics and mobile communication conference, iemcon 2022, pp. 166–170, 2022, DOI: 10.1109/iemcon56893.2022.9946513. [Google Scholar]
  9. G. Singh, K. Guleria, And S. Sharma, “a deep learning-based fine-tuned convolutional neural network model for plant leaf disease detection,” in 2023 4th ieee global conference for advancement in technology (gcat), ieee, oct. 2023, pp. 1–6. DOI: 10.1109/gcat59970.2023.10353487. [Google Scholar]
  10. P. N. Thotad, S. Kallur, and A. Nandeppanavar, “an efficient model for plant disease detection in agriculture using deep learning approaches,” in 2023 4th ieee global conference for advancement in technology, gcat 2023, institute of electrical and electronics engineers inc., 2023. DOI: 10.1109/gcat59970.2023.10353343. [Google Scholar]
  11. G. Sachdeva, P. Singh, and P. Kaur, “plant leaf disease classification using deep convolutional neural network with bayesian learning,” in materials today: proceedings, elsevier ltd, 2021, pp. 5584–5590. DOI: 10.1016/j.matpr.2021.02.312. [CrossRef] [Google Scholar]
  12. P. Bedi and P. Gole, “plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network,” artificial intelligence in agriculture, vol. 5, pp. 90–101, jan. 2021, DOI: 10.1016/j.aiia.2021.05.002. [CrossRef] [Google Scholar]
  13. M. M. Khalid and O. Karan, “deep learning for plant disease detection,” international journal of mathematics, statistics, and computer science, vol. 2, pp. 75–84, nov. 2023, DOI: 10.59543/ijmscs.v2i.8343. [CrossRef] [Google Scholar]
  14. R. K. Lakshmi And N. Savarimuthu, “a novel transfer learning ensemble based deep neural network for plant disease detection,” in 2021 international conference on computational performance evaluation, compe 2021, institute of electrical and electronics engineers inc., 2021, pp. 17–22. DOI: 10.1109/compe53109.2021.9751910. [Google Scholar]
  15. N. Ullah et al., “a lightweight deep learning-based model for tomato leaf disease classification,” computers, materials and continua, vol. 77, no. 3, pp. 3969–3992, 2023, DOI: 10.32604/cmc.2023.041819. [CrossRef] [Google Scholar]
  16. A. Ulah, T. Alam, A. Ullah, M. Azeem Khalid B.D. Sebai, And C. B. Şahin, “a hybrid approch tomato diseases detection at early stage,” vol. 17, no. 1, pp. 39–56, 2023, DOI: 10.26555/jifo.v17i1.a24759. [Google Scholar]
  17. W. Ullah Khan, S. Nill, E. Abdullah, I. Hamid, And M. Nauman Khan, “disease classification of tomato plant leaves using image processing and machine learning techniques.” [online]. Available: https://www.researchgate.net/publication/372990161 [Google Scholar]
  18. A. Chaudhary And S. S. Singh, "lung cancer detection on ct images by using image processing," 2012, pp. 142–146, DOI: 10.1109/iccs.2012.43. [online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872514395&doi=10.1109%2ficcs.2012.43&partnerid=40&md5=2ea72bd2b70a8c1a88d17329baf39993 [Google Scholar]
  19. A. Khamparia, D. Gupta, V. H. C. De Albuquerque, A. K. Sangaiah, And Jhaveri R. H., "internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning," journal of supercomputing, article vol. 76, no. 11, pp. 8590–8608, 2020, DOI: 10.1007/s11227-020-03159-4. [CrossRef] [Google Scholar]
  20. A. Khamparia, P. K. Singh, P. Rani, D. Samanta, A. Khanna, And Bhushan B., "an internet of health things-driven deep learning framework for detection and classification of skin cancer using transfer learning," transactions on emerging telecommunications technologies, article vol. 32, no. 7, 2021, art no. E3963, DOI: 10.1002/ett.3963. [CrossRef] [Google Scholar]
  21. S. I. Manzoor, J. Singla, And Nikita, "fake news detection using machine learning approaches: a systematic review," 2019: institute of electrical and electronics engineers inc., pp. 230–234, DOI: 10.1109/icoei.2019.8862770. [online].Available: https://www.scopus.com/inward/record.uri?eid=2s2.085074097965&doi=10.1109%2ficoei.2019.8862770&partnerid=40&md5=ff6d3d201ac780d0a58f35f13d8d7948 [Google Scholar]
  22. M. Nagaraju and P. Chawla, "systematic review of deep learning techniques in plant disease detection," international journal of system assurance engineering and management, article vol. 11, no. 3, pp. 547–560, 2020, DOI: 10.1007/s13198-020-00972-1. [Google Scholar]
  23. M. Poongodi, M. Hamdi, A. Sharma, M. Ma, And Singh P. K., "ddos detection mechanism using trust-based evaluation system in vanet," ieee access, article vol. 7, pp. 183532–183544, 2019, art no. 8935220, DOI: 10.1109/access.2019.2960367. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.