Open Access
Issue |
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202455601008 | |
Published online | 09 August 2024 |
- G-Data Mobile Malware Report, https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_Mobile MWR_Q1_2015_US.pdf (2015). [Google Scholar]
- Zhou Y, Jiang X (2012) Dissecting Android malware: charac-terization and evolution. Proc IEEE Symp Secur Priv 4:95–109 [Google Scholar]
- ‘‘AVG’’ http://now.avg.com/malware-is-still-spying-on-you-after-your-mobile-is-off/ [Google Scholar]
- ‘‘Dr. Web ’’: https://news.drweb.com/show/?i=5860&lng=en [Google Scholar]
- ‘‘Platform Architecture.’’ https://developer.android.com/guide/ platform/index.html [Google Scholar]
- ‘‘ART’’ : https://source.android.com/devices/tech/dalvik/ [Google Scholar]
- ‘‘Android Studio’’ : https://developer.android.com/studio/index.html [Google Scholar]
- ‘‘Application Fundamentals.’’ https://developer.android.com/guide/components/fundamentals.html [Google Scholar]
- Muttoo, Sunil Kumar, and Shikha Badhani. "Android malware detection: state of the art." International Journal of Information Technology 9 (2017): 111–117. [CrossRef] [Google Scholar]
- Christodorescu M, Jha S (2004) Testing malware detectors. ACM SIGSOFT Softw Eng Notes 29:34 [CrossRef] [Google Scholar]
- Ning, Peng, and Sushil Jajodia. "Intrusion detection techniques." The Internet Encyclopedia 2 (2003): 355–367. [Google Scholar]
- Debar H, Dacier M, Wespi A (1999) Towards a taxonomy of intrusion-detection systems. Comput Netw 31(8):805–822. [CrossRef] [Google Scholar]
- Gyamfi, Nana Kwame, Nikolaj Goranin, Dainius Ceponis, and Habil Antanas Čenys. 2023. "Automated System-Level Malware Detection Using Machine Learning: A Comprehensive Review" Applied Sciences 13, no. 21: 11908. [CrossRef] [Google Scholar]
- Scalas, Michele & Rieck, Konrad & Giacinto, Giorgio. (2023). Improving malware detection with explainable machine learning. 10.1016/B978-0-32-396098-4.00017-X. [Google Scholar]
- Security, Cyber & Rupasinghe, Prabath & Liyanapathirana, Chethana & Punyasiri, Sathishka. (2023). Signature & Behavior Based Malware Detection. 10.13140/RG.2.2.22127.20640. [Google Scholar]
- Ruchita, Tummepalli, Vemulapalli Sanjitha, Garapati Srinija Chowdary, Adapa Devi Sai Chakradhar, Dinesh Kumar Anuraj, and K. Padmanaban. "Malware Detection in Mobile Phones." In 2023 International Conference on Inventive Computation Technologies (ICICT), pp. 1096–1102. IEEE, 2023. [CrossRef] [Google Scholar]
- Bose, Abhijit, Xin Hu, Kang G. Shin, and Taejoon Park. "Behavioral detection of malware on mobile handsets." In Proceedings of the 6th international conference on Mobile systems, applications, and services, pp. 225–238. 2008. [CrossRef] [Google Scholar]
- Al-amri, Redhwan, Raja Kumar Murugesan, Mustafa Man, Alaa Fareed Abdulateef, Mohammed A. Al-Sharafi, and Ammar Ahmed Alkahtani. 2021. "A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data" Applied Sciences 11, no. 12: 5320. [Google Scholar]
- Ferrag, Mohamed Amine, Leandros Maglaras, Sotiris Moschoyiannis, and Helge Janicke. "Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study." Journal of Information Security and Applications 50 (2020): 102419. [CrossRef] [Google Scholar]
- Static Analysis And Dynamic Analysis For Android Package Kit (APK) https://medium.com/@HirushanTech/static-analysis-and-dynamic-analysis-over-android-package-file-apk-6721830cb155 [Google Scholar]
- Wu, Dong-Jie, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. "Droidmat: Android malware detection through manifest and api calls tracing." In 2012 Seventh Asia joint conference on information security, pp. 62–69. IEEE, 2012. [CrossRef] [Google Scholar]
- Faruki, Parvez. "Techniques For Analysis And Detection Of Android Malware…" PhD diss., MNIT Jaipur, 2016. [Google Scholar]
- Kim, Ye Kyung. "Framework for analysis of android malware." Master's thesis, University of Akron, 2014. [Google Scholar]
- A. Amamra, C. Talhi, and J. Robert. Smartphone malware detection: From a survey towards taxonomy. In Malicious and Unwanted Software (MALWARE), 2012. [Google Scholar]
- Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. Riskranker: Scalable and accurate zeroday android malware detection. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages 281–294, New York, NY, USA, 2012. ACM. [CrossRef] [Google Scholar]
- Spreitzer, Raphael, Gerald Palfinger, and Stefan Mangard. "Scandroid: Automated side-channel analysis of android apis." In Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pp. 224–235. 2018. [Google Scholar]
- Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market: Detecting malicious apps in official and alternative Android markets. In Network and Distributed System Security Symposium (NDSS), 2012. [Google Scholar]
- “DroidBox” https://github.com/pjlantz/droidbox [Google Scholar]
- Rani, Sangeeta, and Kanwalvir Singh Dhindsa. "Malware detection techniques and tools for Android." International Journal of Social Computing and Cyber-Physical Systems 1, no. 4 (2016): 326–343. [CrossRef] [Google Scholar]
- Tam, Kimberly. "Analysis and Classification of Android Malware." PhD diss., Royal Holloway, University of London, 2016. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.