Open Access
Issue
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
Article Number 01011
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202455601011
Published online 09 August 2024
  1. Abdellatif, H. Mubarak, H. Abdellatef, J. Kanesan, and G. Kendall, “Biomedical Signal Processing and Control Computational detection and interpretation of heart disease based on conditional variational auto-encoder and stacked ensemble-learning framework,” Biomed. Signal Process. Control, vol. 88, no. PA, p. 105644, 2024, DOI: 10.1016/j.bspc.2023.105644. [CrossRef] [Google Scholar]
  2. G. Dastider, F. Sadik, and S. A. Fattah, “An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound,” Comput. Biol. Med., vol. 132, no. October 2020, p. 104296, 2021, DOI: 10.1016/j.compbiomed.2021.104296. [CrossRef] [Google Scholar]
  3. Masaki, K. Nagumo, B. Lamsal, K. Oiwa, and A. Nozawa, “Anomaly detection in facial skin temperature using variational autoencoder,” Artif. Life Robot., vol. 26, no. 1, pp. 122–128, 2021, DOI: 10.1007/s10015-020-00634-2. [CrossRef] [Google Scholar]
  4. M. Ismael and A. Şengur, “Deep learning approaches for COVID-19 detection based on chest X-ray images,” Expert Syst. Appl., vol. 164, no. September 2020, 2021, DOI: 10.1016/j.eswa.2020.114054. [CrossRef] [Google Scholar]
  5. A. Narin, C. Kaya, and Z. Pamuk, “Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks,” Pattern Anal. Appl., vol. 24, no. 3, pp. 1207–1220, 2021, DOI: 10.1007/s10044-021-00984-y. [Google Scholar]
  6. A. Reddy, S. Roy, S. Kumar, and R. Tripathi, “A Scheme for Effective Skin Disease Detection using Optimized Region Growing Segmentation and Autoencoder based Classification,” Procedia Comput. Sci., vol. 218, pp. 274–282, 2022, DOI: 10.1016/j.procs.2023.01.009. [CrossRef] [Google Scholar]
  7. Pratella, S. A. Saadi, S. Bannwarth, and V. Paquis-fluckinger, “A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases,” 2021. [Google Scholar]
  8. Jha and G. R. Kwon, “Alzheimer’s disease detection using sparse autoencoder, scale conjugate gradient and softmax output layer with fine tuning,” Int. J. Mach. Learn. Comput., vol. 7, no. 1, pp. 13–17, 2017, DOI: 10.18178/ijmlc.2017.7.1.612. [CrossRef] [Google Scholar]
  9. Demir, “Deep autoencoder-based automated brain tumor detection from MRI data,” Artif. Intell. Brain-Computer Interface, pp. 317–351, Jan. 2022, DOI: 10.1016/B978-0-323-91197-9.00013-8. [Google Scholar]
  10. Gunduz, “Biomedical Signal Processing and Control An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson ’ s disease classification,” Biomed. Signal Process. Control, vol. 66, no. January, p. 102452, 2021, DOI: 10.1016/j.bspc.2021.102452. [CrossRef] [Google Scholar]
  11. M. Davila Delgado and L. Oyedele, “Deep learning with small datasets: using autoencoders to address limited datasets in construction management,” Appl. Soft Comput., vol. 112, p. 107836, 2021, DOI: 10.1016/j.asoc.2021.107836. [CrossRef] [Google Scholar]
  12. Raza and N.K. Singh, “A Tour of Unsupervised Deep Learning for Medical Image Analysis,” Curr. Med. Imaging Former. Curr. Med. Imaging Rev., vol. 17, no. 9, pp. 1059–1077, 2021, DOI: 10.2174/1573405617666210127154257. [CrossRef] [Google Scholar]
  13. Kumar, S., Setia, R., & Sigh, K. (2023). Artificial Intelligence and Machine Learning in Satellite Data Processing and Services. Lecture Notes in Electrical Engineering, 970. [Google Scholar]
  14. Zhang and X. Chen, “Prediction of Potential miRNA -Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder,” pp. 1–15, 2019. [Google Scholar]
  15. Baucum, A. Khojandi, and R. Vasudevan, “Improving Deep Reinforcement Learning with Transitional Variational Autoencoders : A Healthcare Application,” vol. XX, no. Xx, pp. 1–8, 2020. [Google Scholar]
  16. Horry et al., “Debiasing pipeline improves deep learning model generalization for X-ray based lung nodule detection,” 2022, [Online]. Available: http://arxiv.org/abs/2201.09563. [Google Scholar]
  17. M. Panagiotou, A. Zlatintsi, P. P. Filntisis, A. J. Roumeliotis, N. Efthymiou, and P. Maragos, “A comparative study of autoencoder architectures for mental health analysis using wearable sensors data,” Eur. Signal Process. Conf., vol. 2022-Augus, pp. 1258–1262, 2022, DOI: 10.23919/eusipco55093.2022.9909697. [Google Scholar]
  18. N. Rashid, M. A. F. Hossain, M. Ali, M. Islam Sukanya, T. Mahmud, and S. A. Fattah, “AutoCovNet: Unsupervised feature learning using autoencoder and feature merging for detection of COVID-19 from chest X-ray images,” Biocybern. Biomed. Eng., vol. 41, no. 4, pp. 1685–1701, 2021, DOI: 10.1016/j.bbe.2021.09.004. [CrossRef] [Google Scholar]
  19. O. Stephen, M. Sain, U. J. Maduh, and D. U. Jeong, “An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare,” J. Healthc. Eng., vol. 2019, 2019, DOI: 10.1155/2019/4180949. [Google Scholar]
  20. Pneumonia.” https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed Oct. 12, 2022)”. [Google Scholar]
  21. P. Bedi and P. Gole, “Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network,” Artif. Intell. Agric., vol. 5, pp. 90–101, 2021, DOI: 10.1016/j.aiia.2021.05.002. [Google Scholar]
  22. P. Naga Srinivasu, T. B. Krishna, S. Ahmed, N. Almusallam, F. Khaled Alarfaj, and N. Allheeib, “Variational Autoencoders-BasedSelf-Learning Model for Tumor Identification and Impact Analysis from 2-D MRI Images,” J. Healthc. Eng., vol. 2023, 2023, DOI: 10.1155/2023/1566123. [Google Scholar]
  23. P. Kumar and R. Pratyay, GAAE : a novel genetic algorithm based on autoencoder with ensemble classifiers for imbalanced healthcare data, vol. 79, no. 1. Springer US, 2023. DOI: 10.1007/s11227-022-04679-x. [Google Scholar]
  24. R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, D. Gupta, O. Castillo, and S. Kumar, “Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification,” Pattern Recognit. Lett., vol. 151, pp. 267–274, 2021, DOI: 10.1016/j.patrec.2021.08.018. [CrossRef] [Google Scholar]
  25. S. Biswal, J. Duke, B. Malin, and W. Stewart, “EVA : Generating Longitudinal Electronic Health Records Using Conditional Variational Autoencoders,” no. 2016, pp. 1–22, 2021. [Google Scholar]
  26. S. Hua, W. Suresh, and C. Satapathy, “Secondary Pulmonary Tuberculosis Identification Via pseudo-Zernike Moment and Deep Stacked Sparse Autoencoder,” J. Grid Comput., 2022, DOI: 10.1007/s10723-021-09596-6. [Google Scholar]
  27. Sharma, P. K., Sachdeva, A., & Bhargava, C. (2021). Fuzzy logic: A tool to predict the Renal diseases. Research Journal of Pharmacy and Technology, 14(5), 2598–2602. [CrossRef] [Google Scholar]
  28. Singh, D., Rakhra, M., Aledaily, A. N., Kariri, E., Viriyasitavat, W., Yadav, K., … & Kaur, A. (2023). Fuzzy logic based medical diagnostic system for hepatitis B using machine learning. Soft Computing, 1–17. [Google Scholar]
  29. Shaheamlung, G., Kaur, H., & Kaur, M. (2020, June). A Survey on machine learning techniques for the diagnosis of liver disease. In 2020 International Conference on Intelligent Engineering and Management (ICIEM) (pp. 337–341). IEEE. [CrossRef] [Google Scholar]
  30. S. Sarv Ahrabi, A. Momenzadeh, E. Baccarelli, M. Scarpiniti, and L. Piazzo, How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study, no. 0123456789. Springer US, 2022. DOI: 10.1007/s11227-022-04775-y. [Google Scholar]
  31. S. Gite, “Enhanced lung image segmentation using deep learning,” Neural Comput. Appl., vol. 8, 2021, DOI: 10.1007/s00521-021-06719-8. [Google Scholar]
  32. S. Zhu, W. Zheng, and H. Pang, “Computer Methods and Programs in Biomedicine CPAE : Contrastive predictive autoencoder for unsupervised pre-training in health status prediction,” Comput. Methods Programs Biomed., vol. 234, p. 107484, 2023, DOI: 10.1016/j.cmpb.2023.107484. [CrossRef] [Google Scholar]
  33. T. Rahman et al., “Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization,” IEEE Access, vol. 8, pp. 191586–191601, 2020, DOI: 10.1109/ACCESS.2020.3031384. [CrossRef] [Google Scholar]
  34. Verma, P., Dumka, A., Singh, R., Ashok, A., Singh, A., Aljahdali, H. M., … & Rauf, H.T. (2021). A deep learning based approach for patient pulmonary CT image screening to predict coronavirus (SARS-CoV-2) infection. Diagnostics, 11(9), 1735. [CrossRef] [PubMed] [Google Scholar]
  35. Z. Diame, M. ElBery, M. Salem, and M. Roushdy, “Experimental Comparative Study on Autoencoder Performance for Aided Melanoma Skin Disease Recognition,” Int. J. Intell. Comput. Inf. Sci., vol. 22, no. 1, pp. 88–97, 2022, DOI: 10.21608/ijicis.2022.104799.1136. [Google Scholar]
  36. R. Ashima, A. Haleem, S. Bahl, M. Javaid, S. K. Mahla, and S. Singh, "Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0," 2021, vol. 45: Elsevier Ltd, pp. 5081–5088, DOI: 10.1016/j.matpr.2021.01.583. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104695119&doi=10.1016%2fj.matpr.2021.01.583&partnerID=40&md5=73bf382a49b7b3ece1e9182b52a9a912 [Google Scholar]
  37. G. Dhiman et al., "BEPO: A novel binary emperor penguin optimizer for automatic feature selection," Knowledge-Based Systems, Article vol. 211, 2021, Art no. 106560, DOI: 10.1016/j.knosys.2020.106560. [CrossRef] [Google Scholar]
  38. P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, "Research on auto-scaling of web applications in cloud: Survey, trends and future directions," Scalable Computing, Article vol. 20, no. 2, pp. 399–432, 2019, DOI: 10.12694/scpe.v20i2.1537. [Google Scholar]
  39. S. Singh, K. S. Parmar, J. Kumar, and S. J. S. Makkhan, "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons and Fractals, Article vol. 135, 2020, Art no. 109866, DOI: 10.1016/j.chaos.2020.109866. [CrossRef] [Google Scholar]
  40. N. Yuvaraj et al., "Nature-Inspired-Based Approach for Automated Cyberbullying Classification on Multimedia Social Networking," Mathematical Problems in Engineering, Article vol. 2021, 2021, Art no. 6644652, DOI: 10.1155/2021/6644652. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.