Open Access
Issue
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
Article Number 01038
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202455601038
Published online 09 August 2024
  1. Hassani, H., & Silva, E. (2015). Forecasting with big data: A review. Annals of Data Science, 2(1), 5-19. [CrossRef] [Google Scholar]
  2. Snijders, C., Matzat, U., & Reips, U.-D. (2012). Big data: Big gaps of knowledge in the field of internet science. International Journal of Internet Science, 7(1), 1-5. [Google Scholar]
  3. Benckendorff, P.J., Sheldon, P.J., & Fesenmaier, D.R. (2014). Tourism information technology. [CrossRef] [Google Scholar]
  4. Frederiksen, L. (2012). Big data. Public Services Quarterly, 8(4), 345-349. [CrossRef] [Google Scholar]
  5. Fuchs, M., Heopken, W., & Lexhagen, M. (2014). Big data analytics for knowledge generation in tourism destinations—A case from Sweden. Journal of Destination Marketing and Management, 3(4), 198-209. [CrossRef] [Google Scholar]
  6. Invattur Report. (2015). Bid Data: retos y oportunidaddes para el turismo. http://invattur.gva.es/estudio/big-data-retos-y-oportunidades-para-el-turismo. [Google Scholar]
  7. Dolnicar, S., & Ring, A. (2014). Tourism marketing research: Past, present and future. Annals of Tourism Research, 47, 31-47. [CrossRef] [Google Scholar]
  8. Krishna, A. (2012). An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. Journal of Consumer Psychology, 22(3), 332-351. [CrossRef] [Google Scholar]
  9. Csordas, T.J. (1999). Embodiment and cultural phenomenology. In G. Weiss & H.F. Haber (Eds.), Perspectives on embodiment: The intersections of nature and culture (pp. 143-163). London: Routledge. [Google Scholar]
  10. K. Pradhan and P. Chawla, “Medical Internet of things using machine learning algorithms for lung cancer detection, ” Journal of Management Analytics, Review vol. 7, no. 4, pp. 591-623, 2020,DOI: 10.1080/23270012.2020.1811789. [CrossRef] [Google Scholar]
  11. R. Ashima, A. Haleem, S. Bahl, M. Javaid, S.K. Mahla, and S. Singh, “Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0," 2021, vol. 4 Elsevier Ltd, pp. 5081-5088,DOI: 10.1016/j.matpr.2021.01.583. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0. [Google Scholar]
  12. T. Baranwal Nitika, and P.K. Pateriya, "Development of IoT based smart security and monitoring devices for agriculture", 2016: Institute of Electrical and Electronics Engineers Inc., pp. 597-602,DOI: 10.1109/CONFLUENCE.2016.7508189. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017305538&doi=10.1109%2fCONFLUENCE.2016.7508189&partnerID=40&md5=a3ab716b97a415a6e272ac65934b3788 [Google Scholar]
  13. A. Kumar, S. Sharma, N. Goyal, A. Singh, X. Cheng, and P. Singh, "Secure and energy-efficient smart building architecture with emerging technology IoT", Computer Communications, Article vol. 176, pp. 207-217, 2021,DOI: 10.1016/j.comcom.2021.06.003. [CrossRef] [Google Scholar]
  14. A. Sharma, Sarishma, R. Tomar, N. Chilamkurti, and B.G. Kim, "Blockchain based smart contracts for internet of medical things in e-healthcare, " Electronics (Switzerland), Article vol. 9, no. 10, pp. 1-14, 2020, Art no. 1609,DOI: 10.3390/electronics9101609. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.