Open Access
Issue
E3S Web Conf.
Volume 557, 2024
2024 6th International Conference on Resources and Environment Sciences (ICRES 2024)
Article Number 02001
Number of page(s) 8
Section Wastewater Treatment and Water Resource Management
DOI https://doi.org/10.1051/e3sconf/202455702001
Published online 15 August 2024
  1. A.P. Buzzini, E.C. Pires, Evaluation of a upflow anaerobic sludge blanket reactor with partial recirculation of effluent used to treat wastewaters from pulp and paper plants, Bioresour Technol 98 (2007) 1838–1848. https://doi.org/10.1016/j.biortech.2006.06.030. [CrossRef] [PubMed] [Google Scholar]
  2. O. Ashrafi, L. Yerushalmi, F. Haghighat, Wastewater treatment in the pulp-andpaper industry: A review of treatment processes and the associated greenhouse gas emission, J Environ Manage 158 (2015) 146–157. https://doi.org/10.1016/j.jenvman.2015.05.010. [CrossRef] [PubMed] [Google Scholar]
  3. V. Kumar, M.P. Shah, Advanced oxidation processes for complex wastewater treatment, in: Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, 2020: pp. 1–31. https://doi.org/10.1016/B978-0-12-821011-6.00001-3. [Google Scholar]
  4. E.E. Ebrahiem, M.N. Al-Maghrabi, A.R. Mobarki, Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology, Arabian Journal of Chemistry 10 (2017) S1674–S1679. https://doi.org/10.1016/j.arabjc.2013.06.012. [CrossRef] [Google Scholar]
  5. M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Science of the Total Environment 670 (2019) 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180. [CrossRef] [Google Scholar]
  6. Y.Y. Chu, Y. Qian, M.J. Bai, Three advanced oxidation processes for the treatment of the wastewater from acrylonitrile production, Water Science and Technology 60 (2009) 2991–2999. https://doi.org/10.2166/wst.2009.691. [CrossRef] [PubMed] [Google Scholar]
  7. S.R. Mirmasoomi, M. Mehdipour Ghazi, M. Galedari, Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3nanocomposite synthesized by ultrasonic-assisted impregnation method, Sep Purif Technol 175 (2017) 418–427. https://doi.org/10.1016/j.seppur.2016.11.021. [CrossRef] [Google Scholar]
  8. X. He, X. Meng, J. Sun, Z. Yuan, Y. He, S. Chen, Synthesis of TiO2@Fe2O3 Nanocomposites as effective Photocatalyst for degradation of p-nitophenol in oilfield wastewater, Int J Electrochem Sci 17 (2022). https://doi.org/10.20964/2022.11.83. [Google Scholar]
  9. K. O’Dowd, S.C. Pillai, Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances, J Environ Chem Eng 8 (2020). https://doi.org/10.1016/j.jece.2020.104063. [Google Scholar]
  10. K.G.N. Quiton, M.C. Lu, Y.H. Huang, Synergistic degradation of Methylene Blue by novel Fe-Co bimetallic catalyst supported on waste silica in photo-Fenton-like system, Sustainable Environment Research 32 (2022). https://doi.org/10.1186/s42834-022-00127-w. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.