Open Access
Issue |
E3S Web Conf.
Volume 557, 2024
2024 6th International Conference on Resources and Environment Sciences (ICRES 2024)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 10 | |
Section | Wastewater Treatment and Water Resource Management | |
DOI | https://doi.org/10.1051/e3sconf/202455702003 | |
Published online | 15 August 2024 |
- R. Quesada, C. Rodolfo, L.T.D. Tan. (1998). Effects of the Early Voluntary Sectoral Liberalization on Jewelry and Gems, P APEC Stud Cen Net. https://pascn.pids.gov.ph/files/Discussions%20Papers/1998/pascndp9804.pdf. [Google Scholar]
- E.L. Vivas, C.G. Alfafara, V.P. Migo, K. Cho, M.C.M. Detras, L.C. Trinidad, M.D. Mendoza, S. Lee. (2019). Comparative evaluation of alkali precipitation and electrodeposition for copper removal in artisanal gold smelting wastewater in the Philippines, D Water Treat 150, 396–405. https://doi.org/10.5004/DWT.2019.23790. [CrossRef] [Google Scholar]
- C. Melbane. (2023). Bioavailability and Toxicity Models of Copper to Freshwater Life: The State of Regulatory Science, E Tox Chem 42, 2529–2563. https://doi.org/10.1002/etc.5736. [CrossRef] [PubMed] [Google Scholar]
- C. Alfafara, M.C. Maguyon, M.V. Laurio, V. Migo, L. Trinidad, E. Ompad, J.M. Sunga-Amparo, M. Mendoza. (2012). Scale-Up and Operating Factors for Electrolytic Silver Recovery from Effluents of Artisanal Used-Gold-Jewelry Smelting Plants in the Philippines, J Health Pollut 2, 32–42. https://doi.org/10.5696/2156-9614-2.3.32. [CrossRef] [Google Scholar]
- S.J. Supnet, E. V. Caballero, R. Parcon, J. Simbahan. (2020). Marilao-MeycauayanObando River System (MMORS) Harbors Multidrug-Resistant Bacteria Indicating High Risk of Antimicrobial Contamination. https://www.fao.org/fishery/en/openasfa/e28bd454-d718-404e-a0ce-f7efc6b9593e. [Google Scholar]
- G. Molina. (2023). Predicting Pollution Level Using Random Forest: A Case Study of Marilao River in Bulacan Province, Philippines, http://dx.doi.org/10.13140/RG.2.2.11262.77127. [Google Scholar]
- A.C. Rola, J. M. Pulhin, R. A. Hall. (2018). Water Policy in the Philippines: Issues, Initiatives, and Prospects. doi:https://doi.org/10.1007/978-3-319-70969-7. [CrossRef] [Google Scholar]
- L. Belo, A. Orbecido, A. Beltran, E. Vallar, M.C. Galvez, R.C. Eusebio, N. Ledesma, C. Deocaris. (2018). Water quality assessment of Meycauayan River, Bulacan, Philippines, https://www.researchgate.net/publication/350682093_Water_quality_assessment_of_Meycauayan_River_Bulacan_Philippines. [Google Scholar]
- I. Cooper. (2013). Survival with Proposed Effluent Limitation Guidelines – Wastewater Management in a More Restrictive Environment, http://dx.doi.org/10.2175/193864713813685601. [Google Scholar]
- R. Laranjo, M.R. Naguit, F. Jamolod, K.G. Jambre, N. Cabornay, V. Bernido, M.D. Gahisan. (2023). Evaluation of the physicochemical parameters on the water quality of the major rivers of Zamboanga del Norte, Philippines, E Science 10. https://www.aimspress.com/article/doi/10.3934/environsci.2023022. [Google Scholar]
- Y. Liu, H. Wang, Y. Cui, N. Chen. (2023). Removal of Copper Ions from Wastewater: A Review, Int J Environ Res Public Health 20. https://doi.org/10.3390/IJERPH20053885. [Google Scholar]
- S. Bandaru, A. Sen, G. Pramanik, G.K. Dalapati, S. Biring, S. Chakrabortty. (2023). Efficient wastewater treatment through nano-catalyst: The role of H2O2 and application in wide pH window, Environmental Advances 13, 100428. https://doi.org/10.1016/J.ENVADV.2023.100428. [CrossRef] [Google Scholar]
- D.J. Price, D.J. Willshaw, Y. Zhang, C. Wang, Y. Zhang, Q. Wu. (2022). Wastewater Treatment by Enhanced H2O2 – Based Advanced Oxidation Process (AOP) Methods: A Review, J Phys Conf Ser 2152, 012011. https://doi.org/10.1088/17426596/2152/1/012011. [CrossRef] [Google Scholar]
- J.V.R. Pleto, V.P. Migo, M.D.M. Arboleda. (2020). Preliminary Water and Sediment Quality Assessment of the Meycauayan River Segment of the Marilao-MeycauayanObando River System in Bulacan, the Philippines, J Health Pollut 10, 1–9. https://doi.org/10.5696/2156-9614-10.26.200609. [Google Scholar]
- H. Prokkola, E.T. Nurmesniemi, U. Lassi. (2020). Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution, ChemEngineering 2020, Vol. 4, Page 51 4, 51. https://doi.org/10.3390/CHEMENGINEERING4030051. [CrossRef] [Google Scholar]
- H. Estay, L. Barros, E. Troncoso. (2021). Metal Sulfide Precipitation: Recent Breakthroughs and Future Outlooks, Minerals 2021, Vol. 11, Page 1385 11, 1385. https://doi.org/10.3390/MIN11121385. [CrossRef] [Google Scholar]
- B. Ramavandi. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata, Water Resour Ind 6, 36–50. https://doi.org/10.1016/J.WRI.2014.07.001. [CrossRef] [Google Scholar]
- S. Ahmadi, L. Mohammadi, C.A. Igwegbe, S. Rahdar, A.M. Banach. (2018). Application of response surface methodology in the degradation of Reactive Blue 19 using H2O2/MgO nanoparticles advanced oxidation process, International Journal of Industrial Chemistry 9, 241–253. https://doi.org/10.1007/s40090-018-0153-4. [CrossRef] [Google Scholar]
- N. Belachew, R. Fekadu, A.A. Abebe. (2020). RSM-BBD Optimization of FentonLike Degradation of 4-Nitrophenol Using Magnetite Impregnated Kaolin, https://doi.org/10.1177/1178622120932124. [Google Scholar]
- Z.Z. Chowdhury, S.M. Zain, R.A. Khan, A.A. Ahmed. (2011). Equilibrium Kinetics and Isotherm Studies of Cu (II) Adsorption from Waste Water onto Alkali Activated Oil Palm Ash, Am J Appl Sci 8, 230–237. https://doi.org/10.3844/AJASSP.2011.230.237. [CrossRef] [Google Scholar]
- S.S. Al Moharbi, M.G. Devi, B.M. Sangeetha, S. Jahan. (2020). Studies on the removal of copper ions from industrial effluent by Azadirachta indica powder, Appl Water Sci 10, 1–10. https://doi.org/10.1007/S13201-019-1100-Z/FIGURES/11. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.