Open Access
Issue |
E3S Web Conf.
Volume 557, 2024
2024 6th International Conference on Resources and Environment Sciences (ICRES 2024)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 11 | |
Section | Environmental Biology and Resource Management | |
DOI | https://doi.org/10.1051/e3sconf/202455703005 | |
Published online | 15 August 2024 |
- Savary, S. et al. Crop health and its global impacts on the components of food security. Food Secur. 9, 311–327 (2017). [CrossRef] [Google Scholar]
- Döring, T. F., Pautasso, M., Finckh, M. R. & Wolfe, M. S. Concepts of plant health reviewing and challenging the foundations of plant protection. Plant Pathol. 61, 1–15 (2012). [CrossRef] [Google Scholar]
- Rizzo, D. M., Lichtveld, M., Mazet, J. A. K., Togami, E. & Miller, S. A. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Heal. Outlook 3, (2021). [Google Scholar]
- Kapil, S. & Rabin, T. Rice Blast, A Major Threat to the Rice Production and its Various Management Techniques. (2021) doi:10.13140/RG.2.2.34303.53924. [Google Scholar]
- Dorairaj, D. & Govender, N. T. Rice and paddy industry in Malaysia: governance and policies, research trends, technology adoption and resilience. Front. Sustain. Food Syst. 7, 1–22 (2023). [CrossRef] [Google Scholar]
- Putri, R. E., Yahya, A., Adam, N. M. & Abd Aziz, S. Rice yield prediction model with respect to crop healthiness and soil fertility. Food Res. 3, 171–176 (2019). [Google Scholar]
- Zhang, Y., Su, Z., Shen, W., Jia, R. & Luan, J. Remote monitoring of heading rice growing and nitrogen content based on UAV images. Int. J. Smart Home 10, 103–114 (2016). [CrossRef] [Google Scholar]
- Deng, L. et al. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 146, 124–136 (2018). [CrossRef] [Google Scholar]
- Liaghat, S. & Balasundram, S. K. A review: The role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 5, 50–55 (2010). [CrossRef] [Google Scholar]
- Singh, P. et al. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. Hyperspectral Remote Sensing: Theory and Applications (LTD, 2020). doi:10.1016/B978-0-08-102894-0.00009-7. [Google Scholar]
- Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J. & Bareth, G. Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 42, 1215–1219 (2018). [CrossRef] [Google Scholar]
- Assmann, J. J., Kerby, J. T., Cunliffe, A. M. & Myers-Smith, I. H. Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 7, 54–75 (2019). [CrossRef] [Google Scholar]
- Lowe, A., Harrison, N. & French, A. P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 1–12 (2017) doi:10.1186/s13007-017-0233-z. [PubMed] [Google Scholar]
- Matese, A. & Di Gennaro, S. F. Practical applications of a multisensor UAV platform based on multispectral, thermal and RGB high resolution images in precision viticulture. Agric. 8, (2018). [Google Scholar]
- Lingli, Z. et al. A Review: Remote Sensing Sensors. Web of Science (WEB OF SCIENCE, 2018). doi:http://dx.doi.org/10.5772/intechopen.71049. [Google Scholar]
- Saddik, H. Al et al. Multispectral band selection for imaging sensor design for vineyard disease detection : case of Flavescence Dorée To cite this version : HAL Id : hal-01772773 Multispectral band selection for imaging sensor design for vineyard disease detection : case of. (2017) doi:10.1017/S2040470017000802. [Google Scholar]
- Chen, W., Zhao, J., Cao, C. & Tian, H. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Glob. Ecol. Conserv. 16, (2018). [Google Scholar]
- Sanseechan, P. et al. Use of vegetation indices in monitoring sugarcane white leaf disease symptoms in sugarcane field using multispectral UAV aerial imagery Use of vegetation indices in monitoring sugarcane white leaf disease symptoms in sugarcane field using multispectral UA. Earth Environ. Sci. 1–8 (2019) doi:10.1088/17551315/301/1/012025. [Google Scholar]
- Yuhao, A., Norasma, N., Ya, C., Roslin, N. A. & Ismail, M. R. SCIENCE & TECHNOLOGY Rice Chlorophyll Content Monitoring using Vegetation Indices from Multispectral Aerial Imagery. 28, 779–795 (2020). [Google Scholar]
- Tan, C. et al. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. PLoS One 15, 1–15 (2020). [Google Scholar]
- Aziz, N. H. et al. Detection of Bacterial Leaf Blight Disease Using RGB-Based Vegetation Indices and Fuzzy Logic. 2023 19th IEEE Int. Colloq. Signal Process. Its Appl. CSPA 2023 Conf. Proc. 134–139 (2023) doi:10.1109/CSPA57446.2023.10087429. [Google Scholar]
- Yin, N., Liu, R., Zeng, B. & Liu, N. A review: UAV-based Remote Sensing. IOP Conf. Ser. Mater. Sci. Eng. 490, (2019). [Google Scholar]
- Loayza, G. C. H., Palacios, S., Balcazar, M., Carbajal, M. & Quiroz, R. Development of low-cost remote sensing tools and methods for supporting smallholder agriculture. 247–263 (2020). [Google Scholar]
- Elfri, M. A. A., Rahman, F. H., Newaz, S. H. S., Suhaili, W. S. & Au, T. W. Determining Paddy Crop Health from Aerial Image using Machine Learning Approach: A Brunei Darussalam Based Study. AIP Conf. Proc. 2643, (2023). [Google Scholar]
- Zhen, Z. et al. A Modified Transformed Soil Adjusted Vegetation Index for Cropland in Jilin Province, China. Acta Geol. Sin. (English Ed. 93, 173–176 (2019). [CrossRef] [Google Scholar]
- Liu, K. et al. Evaluation of grain yield based on digital images of rice canopy. Plant Methods 15, 1–11 (2019). [CrossRef] [PubMed] [Google Scholar]
- Tilly, N. & Bareth, G. Estimating nitrogen from structural crop traits at field scale-a novel approach versus spectral vegetation indices. Remote Sens. 11, (2019). [Google Scholar]
- EOS Data Analytics. NDRE : Normalized Difference Red Edge Index NDRE Vegetation Index : How It Monitors The Health Of Crops NDRE In Action : Practical Applications On EOSDA Crop Monitoring. 5 (2023). [Google Scholar]
- Adak, S. et al. Prediction of wheat yield using spectral reflectance indices under different tillage, residue and nitrogen management practices. Curr. Sci. 121, 402–413 (2021). [CrossRef] [Google Scholar]
- Sanseechan, P. et al. Use of vegetation indices in monitoring sugarcane white leaf disease symptoms in sugarcane field using multispectral UAV aerial imagery. IOP Conf. Ser. Earth Environ. Sci. 301, 8–15 (2019). [Google Scholar]
- Cao, X., Liu, Y., Yu, R., Han, D. & Su, B. A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population. Remote Sens. 13, 1–21 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.