Open Access
Issue |
E3S Web of Conf.
Volume 558, 2024
4th International Conference on Sustainable, Circular Management and Environmental Engineering (ISCMEE 2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/e3sconf/202455801001 | |
Published online | 02 August 2024 |
- Kopac, T. (2021). Emerging applications of process intensification for enhanced separation and energy efficiency, environmentally friendly sustainable adsorptive separations: A review. International Journal of Energy Research, 45(11), 15839–15856. https://doi.org/10.1002/er.6944 [CrossRef] [Google Scholar]
- Çakmakçı, S., & Çakmakçı, R. (2023). Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods, 12(2), Article 2. https://doi.org/10.3390/foods12020351 [Google Scholar]
- Aroonsrimorakot, S., Laiphrakpam, M., & Paisantanakij, W. (2021). Application of innovative eco-friendly energy technology for sustainable agricultural farming. In Green Technological Innovation for Sustainable Smart Societies (pp. 211–231). Springer International Publishing. https://doi.org/10.1007/978-3-030-73295-0_10 [Google Scholar]
- Benyam, A., Soma, T., & Fraser, E. (2021). Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production, 323. https://doi.org/10.1016/j.jclepro.2021.129099 [CrossRef] [Google Scholar]
- Sharma, A., Soni, R., & Soni, S. (2023). From waste to wealth: Exploring modern composting innovations and compost valorization. Journal of Material Cycles and Waste Management, 26. https://doi.org/10.1007/s10163-023-01839-w [Google Scholar]
- Mitra, B., Roy Chowdhury, A., Dey, P., Hazra, K., Sinha, A., Hossain, A., & Meena, R. S. (2022). Use of Agrochemicals in Agriculture: Alarming Issues and Solutions (pp. 85–122). https://doi.org/10.1007/978-981-16-5199-1_4 [Google Scholar]
- Chowdhary, P., Bharagava, R., Mishra, S., & Khan, N. (2020). Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health (pp. 235– 256). https://doi.org/10.1007/978-981-13-5889-0_12 [Google Scholar]
- Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285 [CrossRef] [PubMed] [Google Scholar]
- Chakka, A. K., Sriraksha, M. S., & Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, 151, 112140. https://doi.org/10.1016/j.lwt.2021.112140 [CrossRef] [Google Scholar]
- Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S., Ray, K., & Brahmachari, K. (2020). Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability, 12(23), Article 23. https://doi.org/10.3390/su12239808 [CrossRef] [Google Scholar]
- Wang, Y., Qamruzzaman, M., & Kor, S. (2023). Greening the Future: Harnessing ICT, Innovation, Eco-Taxes, and Clean Energy for Sustainable Ecology—Insights from Dynamic Seemingly Unrelated Regression, Continuously Updated Fully Modified, and Continuously Updated Bias-Corrected Models. Sustainability, 15(23), Article 23. https://doi.org/10.3390/su152316417 [Google Scholar]
- Ndunagu, J. N., Ukhurebor, K. E., Akaaza, M., & Onyancha, R. B. (2022). Development of a Wireless Sensor Network and IoT-based Smart Irrigation System. Applied and Environmental Soil Science, 2022(1), 7678570. https://doi.org/10.1155/2022/7678570 [CrossRef] [Google Scholar]
- Hashimi, R., & Hashimi, M. H. (2020). Effect of Losing Nitrogen Fertilizers on Living Organism and Ecosystem, and Prevention Approaches of their Harmful Effect. Asian Soil Research Journal, 10–20. https://doi.org/10.9734/asrj/2020/v4i230088 [Google Scholar]
- Rempelos, L., Baranski, M., Wang, J., Adams, T. N., Adebusuyi, K., Beckman, J. J., Brockbank, C. J., Douglas, B. S., Feng, T., Greenway, J. D., Gür, M., Iyaremye, E., Kong, C. L., Korkut, R., Kumar, S. S., Kwedibana, J., Masselos, J., Mutalemwa, B. N., Nkambule, B. S., … Leifert, C. (2021). Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy, 11(12), Article 12. https://doi.org/10.3390/agronomy11122494 [CrossRef] [Google Scholar]
- Ball, B. C., Bingham, I., Rees, R. M., Watson, C. A., & Litterick, A. (2005). The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science, 85(5), 557–577. https://doi.org/10.4141/S04-078 [CrossRef] [Google Scholar]
- Nair, P., Mohan Kumar, B., & Nair, V. (2021). An Introduction to Agroforestry: Four Decades of Scientific Developments. https://doi.org/10.1007/978-3-030-75358-0 [Google Scholar]
- Vanderroost, M., Ragaert, P., Verwaeren, J., De Meulenaer, B., De Baets, B., & Devlieghere, F. (2017). The digitization of a food package’s life cycle: Existing and emerging computer systems in the logistics and post-logistics phase. Computers in Industry, 87, 15–30. https://doi.org/10.1016/j.compind.2017.01.004 [CrossRef] [Google Scholar]
- Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31(1), 91–118. https://doi.org/10.1051/agro/2010029 [CrossRef] [Google Scholar]
- Matos, S., & Silvestre, B. S. (2013). Managing stakeholder relations when developing sustainable business models: The case of the Brazilian energy sector. Journal of Cleaner Production, 45, 61–73. https://doi.org/10.1016/j.jclepro.2012.04.023 [CrossRef] [Google Scholar]
- Smith, P., Ashmore, M. R., Black, H. I. J., Burgess, P. J., Evans, C. D., Quine, T. A., Thomson, A. M., Hicks, K., & Orr, H. G. (2013). The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50(4), 812–829. https://doi.org/10.1111/1365-2664.12016 [CrossRef] [Google Scholar]
- Saikanth, D. R., . S., Singh, B., Rai, A., Bana, S., Singh Sachan, D., & Singh, B. (2023). Advancing Sustainable Agriculture: A Comprehensive Review for Optimizing Food Production and Environmental Conservation. International Journal of Plant & Soil Science, 35, 417–425. https://doi.org/10.9734/IJPSS/2023/v35i163169 [CrossRef] [Google Scholar]
- Orou Sannou, R., Kirschke, S., & Günther, E. (2023). Integrating the social perspective into the sustainability assessment of agri-food systems: A review of indicators. Sustainable Production and Consumption, 39, 175–190. https://doi.org/10.1016/j.spc.2023.05.014 [CrossRef] [Google Scholar]
- Gonçalves, M. L. M. B. B., & Maximo, G. J. (2022). Circular Economy in the Food Chain: Production, Processing and Waste Management. Circular Economy and Sustainability, 1–19. https://doi.org/10.1007/s43615-022-00243-0 [Google Scholar]
- Gholian-Jouybari, F., Hajiaghaei-Keshteli, M., Bavar, A., Bavar, A., & Mosallanezhad, B. (2023). A design of a circular closed-loop agri-food supply chain network—A case study of the soybean industry. Journal of Industrial Information Integration, 36, 100530. https://doi.org/10.1016/j.jii.2023.100530 [CrossRef] [Google Scholar]
- Bradu, P., Biswas, A., Nair, C., Sreevalsakumar, S., Patil, M., Kannampuzha, S., Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2023). Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research, 30(60), 124488–124519. https://doi.org/10.1007/s11356-022-20024-4 [Google Scholar]
- López-Pedrouso, M., Díaz-Reinoso, B., Lorenzo, J. M., Cravotto, G., Barba, F. J., Moure, A., Domínguez, H., & Franco, D. (2019). Green technologies for food processing: Principal considerations. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds (pp. 55–103). Scopus. https://doi.org/10.1016/B978-0-12-814174-8.00003-2 [Google Scholar]
- Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., & Fernández- Gutiérrez, A. (2017). Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Critical Reviews in Food Science and Nutrition, 57(3), 501–523. https://doi.org/10.1080/10408398.2013.867828 [Google Scholar]
- Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & Sant’Ana, A. de S. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20–35. https://doi.org/10.1016/j.tifs.2017.05.011 [CrossRef] [Google Scholar]
- Granato, D., Nunes, D. S., & Barba, F. J. (2017). An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends in Food Science and Technology, 62, 13–22. Scopus. https://doi.org/10.1016/j.tifs.2016.12.010 [CrossRef] [Google Scholar]
- Marszałek, K., Woźniak, Ł., Barba, F. J., Skąpska, S., Lorenzo, J. M., Zambon, A., & Spilimbergo, S. (2018). Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chemistry, 268, 279–286. Scopus. https://doi.org/10.1016/j.foodchem.2018.06.109 [CrossRef] [PubMed] [Google Scholar]
- Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology, 49, 96–109. Scopus. https://doi.org/10.1016/j.tifs.2016.01.006 [CrossRef] [Google Scholar]
- Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22. Scopus. https://doi.org/10.1016/j.foodchem.2016.12.093 [CrossRef] [PubMed] [Google Scholar]
- Vieira da Silva, B., Barreira, J. C. M., & Oliveira, M. B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 50, 144–158. Scopus. https://doi.org/10.1016/j.tifs.2015.12.007 [CrossRef] [Google Scholar]
- Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404–419. Scopus. https://doi.org/10.1016/j.meatsci.2014.06.031 [CrossRef] [PubMed] [Google Scholar]
- Babu, S., Singh Rathore, S., Singh, R., Kumar, S., Singh, V. K., Yadav, S. K., Yadav, V., Raj, R., Yadav, D., Shekhawat, K., & Ali Wani, O. (2022). Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresource Technology, 360, 127566. https://doi.org/10.1016/j.biortech.2022.127566 [CrossRef] [PubMed] [Google Scholar]
- Hungund, B. S., & Gupta, S. G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World Journal of Microbiology and Biotechnology, 26(10), 1823–1828. https://doi.org/10.1007/s11274-010-0363-1 [CrossRef] [Google Scholar]
- Wu, J.-M., & Liu, R.-H. (2013). Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. Journal of Bioscience and Bioengineering, 115(3), 284–290. https://doi.org/10.1016/j.jbiosc.2012.09.014 [CrossRef] [PubMed] [Google Scholar]
- Arévalo Gallegos, A., Carrera, S., Parra, R., Keshavarz, T., & Iqbal, H. (2016). Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products – A Review. BioResources, 11, 5641–5655. https://doi.org/10.15376/biores.11.2.Gallegos [CrossRef] [Google Scholar]
- Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. https://doi.org/10.1016/j.carbpol.2014.10.008 [CrossRef] [PubMed] [Google Scholar]
- Cakar, F., Ozer, I., Aytekin, A. Ö., & Sahin, F. (2014). Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7–13. https://doi.org/10.1016/j.carbpol.2014.01.103 [CrossRef] [PubMed] [Google Scholar]
- Castro, C., Zuluaga, R., Putaux, J.-L., Caro, G., Mondragon, I., & Gañán, P. (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. From Colombian agroindustrial wastes. Carbohydrate Polymers, 84(1), 96–102. https://doi.org/10.1016/j.carbpol.2010.10.072 [CrossRef] [Google Scholar]
- Chen, L., Hong, F., Yang, X., & Han, S. (2013). Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource Technology, 135, 464–468. https://doi.org/10.1016/j.biortech.2012.10.029 [CrossRef] [PubMed] [Google Scholar]
- Huang, C., Yang, X.-Y., Xiong, L., Guo, H.-J., Luo, J., Wang, B., Zhang, H.-R., Lin, X.-Q., & Chen, X.-D. (2015). Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Applied Biochemistry and Biotechnology, 175(3), 1678–1688. https://doi.org/10.1007/s12010-014-1407-z [CrossRef] [PubMed] [Google Scholar]
- Bhat, I. M., Wani, S. M., Mir, S. A., & Masoodi, F. A. (2022). Advances in xanthan gum production, modifications and its applications. Biocatalysis and Agricultural Biotechnology, 42, 102328. https://doi.org/10.1016/j.bcab.2022.102328 [CrossRef] [Google Scholar]
- Li, H., Zhou, M., Mohammed, A. E. A. Y., Chen, L., & Zhou, C. (2022). From fruit and vegetable waste to degradable bioplastic films and advanced materials: A review. Sustainable Chemistry and Pharmacy, 30, 100859. https://doi.org/10.1016/j.scp.2022.100859 [CrossRef] [Google Scholar]
- Whitney, P. J., & Lynch, J. M. (1996). The Importance of Lignocellulosic Compounds in Composting. In M. de Bertoldi, P. Sequi, B. Lemmes, & T. Papi (Eds.), The Science of Composting (pp. 531–541). Springer Netherlands. https://doi.org/10.1007/978-94-009-1569-5_50 [CrossRef] [Google Scholar]
- Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Mikula, K., Samoraj, M., Gil, F., Taf, R., Moustakas, K., & Chojnacka, K. (2024). Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. Science of The Total Environment, 923, 171343. https://doi.org/10.1016/j.scitotenv.2024.171343 [CrossRef] [Google Scholar]
- Wu, D., Wei, Z., Mohamed, T. A., Zheng, G., Qu, F., Wang, F., Zhao, Y., & Song, C. (2022). Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere, 286, 131635. https://doi.org/10.1016/j.chemosphere.2021.131635 [CrossRef] [PubMed] [Google Scholar]
- Mahmood, H., Moniruzzaman, M., Iqbal, T., & Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18–24. https://doi.org/10.1016/j.cogsc.2019.08.001 [CrossRef] [Google Scholar]
- Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235. https://doi.org/10.1016/j.biortech.2021.125235 [CrossRef] [PubMed] [Google Scholar]
- Nguyen, L. T., Phan, D.-P., Sarwar, A., Tran, M. H., Lee, O. K., & Lee, E. Y. (2021). Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Industrial Crops and Products, 161, 113219. https://doi.org/10.1016/j.indcrop.2020.113219 [CrossRef] [Google Scholar]
- Maheshwari, N. V. (2018). Agro-industrial Lignocellulosic Waste: An Alternative to Unravel the Future Bioenergy. In A. Kumar, S. Ogita, & Y.-Y. Yau (Eds.), Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology (pp. 291–305). Springer India. https://doi.org/10.1007/978-81-322-3763-1_16 [Google Scholar]
- Garlapati, V. K., Chandel, A. K., Kumar, S. P. J., Sharma, S., Sevda, S., Ingle, A. P., & Pant, D. (2020). Circular economy aspects of lignin: Towards a lignocellulose biorefinery. Renewable and Sustainable Energy Reviews, 130, 109977. https://doi.org/10.1016/j.rser.2020.109977 [CrossRef] [Google Scholar]
- Devi, K. B., Malakar, R., Kumar, A., Sarma, N., & Jha, D. K. (2023). Chapter 17 - Ecofriendly utilization of lignocellulosic wastes: Mushroom cultivation and value addition. In M. Kuddus & P. Ramteke (Eds.), Value-Addition in Agri-food Industry Waste Through Enzyme Technology (pp. 237–254). Academic Press. https://doi.org/10.1016/B978-0-323-89928-4.00016-X [CrossRef] [Google Scholar]
- Karadirek, Ş., & Okkay, H. (2018). Statistical modeling of activated carbon production from spent mushroom compost. Journal of Industrial and Engineering Chemistry, 63, 340–347. https://doi.org/10.1016/j.jiec.2018.02.034 [CrossRef] [Google Scholar]
- Su, T., Zhao, D., Khodadadi, M., & Len, C. (2020). Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 24, 56–60. https://doi.org/10.1016/j.cogsc.2020.04.005 [CrossRef] [Google Scholar]
- Costa, F. F., Oliveira, D. T. de, Brito, Y. P., Rocha Filho, G. N. da, Alvarado, C. G., Balu, A. M., Luque, R., & Nascimento, L. A. S. do. (2020). Lignocellulosics to biofuels: An overview of recent and relevant advances. Current Opinion in Green and Sustainable Chemistry, 24, 21–25. https://doi.org/10.1016/j.cogsc.2020.01.001 [CrossRef] [Google Scholar]
- Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815 [CrossRef] [Google Scholar]
- Srivastava, N., Srivastava, M., Manikanta, A., Singh, P., Ramteke, P. W., & Mishra, P. K. (2017). Nanomaterials for biofuel production using lignocellulosic waste. Environmental Chemistry Letters, 15(2), 179–184. https://doi.org/10.1007/s10311-017-0622-6 [CrossRef] [Google Scholar]
- Liguori, R., & Faraco, V. (2016). Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresource Technology, 215, 13–20. https://doi.org/10.1016/j.biortech.2016.04.054 [CrossRef] [PubMed] [Google Scholar]
- Poskart, A., Skrzyniarz, M., Sajdak, M., Zajemska, M., & Skibiński, A. (2021). Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy. Energies, 14(18), Article 18. https://doi.org/10.3390/en14185864 [CrossRef] [Google Scholar]
- Pagano, I., Campone, L., Celano, R., Piccinelli, A. L., & Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295. https://doi.org/10.1016/j.chroma.2021.462295 [CrossRef] [PubMed] [Google Scholar]
- Zannou, O., Pashazadeh, H., Galanakis, C., ALAMRI, A., & Koca, I. (2022). Carboxylic Acid-based Deep Eutectic Solvents Combined with Innovative Extraction Techniques for Greener Extraction of Phenolic Compounds from Sumac (Rhus coriaria L.). Journal of Applied Research on Medicinal and Aromatic Plants, 30, 100380. https://doi.org/10.1016/j.jarmap.2022.100380 [CrossRef] [Google Scholar]
- Carpentieri, S., Soltanipour, F., Ferrari, G., Pataro, G., & Donsì, F. (2021). Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants, 10(9), 1417. https://doi.org/10.3390/antiox10091417 [CrossRef] [PubMed] [Google Scholar]
- Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green extraction techniques—A comparative perspective. Current Opinion in Food Science, 40, 144–156. https://doi.org/10.1016/j.cofs.2021.02.009 [CrossRef] [Google Scholar]
- Rao, M. V., Sengar, A. S., C k, S., & Rawson, A. (2021). Ultrasonication - A green technology extraction technique for spices: A review. Trends in Food Science & Technology, 116, 975–991. https://doi.org/10.1016/j.tifs.2021.09.006 [CrossRef] [Google Scholar]
- Ahmad, R., Aldholmi, M., Mostafa, A., Alqathama, A., Aldarwish, A., Abuhassan, A., Alateeq, L., Bubshait, S., Aljaber, M., & Aldossary, S. (2022). A novel green extraction and analysis technique for the comprehensive characterization of mangiferin in different parts of the fresh mango fruit (Mangifera indica). LWT, 159, 113176. https://doi.org/10.1016/j.lwt.2022.113176 [CrossRef] [Google Scholar]
- Stillitano, T., Spada, E., Iofrida, N., Falcone, G., & De Luca, A. I. (2021). Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research. Sustainability, 13(5), Article 5. https://doi.org/10.3390/su13052472 [CrossRef] [Google Scholar]
- Miranda, B. V., Monteiro, G. F. A., & Rodrigues, V. P. (2021). Circular agri-food systems: A governance perspective for the analysis of sustainable agri-food value chains. Technological Forecasting and Social Change, 170, 120878. https://doi.org/10.1016/j.techfore.2021.120878 [CrossRef] [Google Scholar]
- Chiaraluce, G., Bentivoglio, D., & Finco, A. (2021). Circular Economy for a Sustainable Agri-Food Supply Chain: A Review for Current Trends and Future Pathways. Sustainability, 13(16), Article 16. https://doi.org/10.3390/su13169294 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.