Open Access
Issue |
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 11 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202455901003 | |
Published online | 08 August 2024 |
- Allen, M., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., … & Zickfeld, K. (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Sustainable Development, and Efforts to Eradicate Poverty. [Google Scholar]
- Garg, K. K., Anantha, K. H., Nune, R., Akuraju, V. R., Singh, P., Gumma, M. K., … & Ragab, R. (2020). Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. Journal of Hydrology: Regional Studies, 31, 100732. [CrossRef] [Google Scholar]
- Nayak, S., & Mandal, M. (2012). Impact of land-use and land-cover changes on temperature trends over Western India. Current science, 1166–1173. [Google Scholar]
- Gleick, P. H. (1989). Climate change, hydrology, and water resources. Reviews of Geophysics, 27(3), 329–344. [CrossRef] [Google Scholar]
- Rahaman, S., Kumar, P., Chen, R., Meadows, M. E., & Singh, R. B. (2020). Remote sensing assessment of the impact of land use and land cover change on the environment of Barddhaman district, West Bengal, India. Frontiers in Environmental Science, 8, 127. [CrossRef] [Google Scholar]
- Roy, R., & Majumder, M. (2017). Comparison of surface water quality to land use: a case study from Tripura, India. Desalination and Water Treatment, 85, 147–153. [Google Scholar]
- Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current science, 346–353. [Google Scholar]
- Adhia, N. (2018). Some demographic trends in the world’s most populous country-tobe. Demographics, Social Policy, and Asia (Part II), 23(2). [Google Scholar]
- Bhawan, P. (2005). Water quality monitoring in India-achievements and constraints. [Google Scholar]
- Aayog, N. I. T. I. (2019). Composite water management index. Government of India, New Delhi http://social.niti.gov.in/uploads/sample/water_index_report2.pdf. Accessed, 28, 21. [Google Scholar]
- Jin, L., Whitehead, P. G., Rodda, H., Macadam, I., & Sarkar, S. (2018). Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India. Science of the Total Environment, 637, 907–917. [CrossRef] [Google Scholar]
- Pervez, M. S., & Henebry, G. M. (2015). Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. Journal of Hydrology: Regional Studies, 3, 285–311. [CrossRef] [Google Scholar]
- Ivanova, M., Baste, I., Lee, B., Belliethathan, S., Abdel Gelil, I., Gupta, J., … & Preston, F. (2012). Global Environmental Outlook 5, United Nations Environment Programme: Chapter 17, Global Responses. [Google Scholar]
- Goparaju, L. (2015). Geospatial Technology in environmental impact assessments– retrospective. Present Environment and Sustainable Development, (2), 139–148. [CrossRef] [Google Scholar]
- Baeza Cardarello, S., & Paruelo, J. M. (2020). Land use/Land cover change (2000–2014) in the Rio de la Plata grasslands: an analysis based on MODIS NDVI Time Series. Remote Sensing, 2020, 12 (3). [Google Scholar]
- Gao, B. C. (1995, June). Normalized difference water index for remote sensing of vegetation liquid water from space. In Imaging Spectrometry (Vol. 2480, pp. 225–236). SPIE. [Google Scholar]
- Kadave, K. P., & Kumari, N. (2023). Impact assessment of Climate change on Subarnarekha watershed of Ranchi stretch in Jharkhand. [Google Scholar]
- Meraj, G., Romshoo, S. A., & Yousuf, A. R. (2012). Geoinformatics approach to qualitative forest density loss estimation and protection cum conservation strategy-a case study of Pir Panjal range, J&K, India. Int J Curr Res Rev, 4(16), 47–61. [Google Scholar]
- Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International journal of remote sensing, 25(12), 2365–2401. [CrossRef] [Google Scholar]
- Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 40, 689–697. [CrossRef] [Google Scholar]
- Samal, D. R., & Gedam, S. (2021). Assessing the impacts of land use and land cover change on water resources in the Upper Bhima river basin, India. Environmental Challenges, 5, 100251. [CrossRef] [Google Scholar]
- Singh, S. K., Kumar, V., & Kanga, S. (2017). Land use/land cover change dynamics and river water quality assessment using geospatial technique: a case study of Harmu river, Ranchi (India). International Journal of Scientific Research in Computer Science and Engineering, 5(3), 17–24. [CrossRef] [Google Scholar]
- Mondal, K. C., Rathod, K. G., Joshi, H. M., Mandal, H. S., Khan, R., Rajendra, K., … & Jhariya, D. C. (2020, December). Impact of land-use and land-cover change on groundwater quality and quantity in the Raipur, Chhattisgarh, India: A remote sensing and GIS approach. In IOP Conference Series: Earth and Environmental Science (Vol. 597, No. 1, p. 012011). IOP Publishing. [Google Scholar]
- Mondal, K. C., Rathod, K. G., Joshi, H. M., Mandal, H. S., Khan, R., Rajendra, K., … & Jhariya, D. C. (2020, December). Impact of land-use and land-cover change on groundwater quality and quantity in the Raipur, Chhattisgarh, India: A remote sensing and GIS approach. In IOP Conference Series: Earth and Environmental Science (Vol. 597, No. 1, p. 012011). IOP Publishing. [Google Scholar]
- Singh, S., Singh, C., & Mukherjee, S. (2010). Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Open geosciences, 2(2), 124–131. [CrossRef] [Google Scholar]
- Pankaj, K., Rajarshi, D., Johnson, B. A., Chitresh, S., Mrittika, B., Kefi, M., & Mishra, B. K. (2019). Effect of land use changes on water quality in an ephemeral coastal plain: Khambhat City, Gujarat, India. Water, 11(4). [Google Scholar]
- Smart, R. P., Soulsby, C., Neal, C., Wade, A., Cresser, M. S., Billett, M. F., … & Owen, R. (1998). Factors regulating the spatial and temporal distribution of solute concentrations in a major river system in NE Scotland. Science of the Total Environment, 221(2-3), 93–110. [CrossRef] [Google Scholar]
- Qadir, J., & Singh, P. (2019). Land use/cover mapping and assessing the impact of solid waste on water quality of Dal Lake catchment using remote sensing and GIS (Srinagar, India). SN Applied Sciences, 1(1), 25. [CrossRef] [Google Scholar]
- Zahoor-ul-Hassan, Z. U. H., Shah, J. A., Kanth, T. A., & Pandit, A. K. (2015). Influence of land use/land cover on the water chemistry of Wular Lake in Kashmir Himalaya (India). [Google Scholar]
- Sharma, D., Gupta, R., Singh, R. K., & Kansal, A. (2012). Characteristics of the event mean concentration (EMCs) from rainfall runoff on mixed agricultural land use in the shoreline zone of the Yamuna River in Delhi, India. Applied Water Science, 2, 55–62. [CrossRef] [Google Scholar]
- Samal, D. R., & Gedam, S. (2021). Assessing the impacts of land use and land cover change on water resources in the Upper Bhima river basin, India. Environmental Challenges, 5, 100251. [CrossRef] [Google Scholar]
- Sherif, M. M., & Singh, V. P. (1999). Effect of climate change on sea water intrusion in coastal aquifers. Hydrological processes, 13(8), 1277–1287. [CrossRef] [Google Scholar]
- Nagireddy, N. R., Keesara, V. R., Venkata Rao, G., Sridhar, V., & Srinivasan, R. (2023). Assessment of the impact of climate change on streamflow and sediment in the Nagavali and Vamsadhara Watersheds in India. Applied Sciences, 13(13), 7554. [CrossRef] [Google Scholar]
- Government of India (2021) Water Resources Sector Report.Development Monitoring and Evaluation Office Development Monitoring and Evaluation Office (DMEO), NITI Aayog. [Google Scholar]
- Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of the total environment, 644, 503–519. [CrossRef] [Google Scholar]
- Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., … & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109, 5–31. [CrossRef] [Google Scholar]
- Nazarenko, L., Schmidt, G. A., Miller, R. L., Tausnev, N., Kelley, M., Ruedy, R., … & Zhang, J. (2015). Future climate change under RCP emission scenarios with GISS M odelE2. Journal of Advances in Modeling Earth Systems, 7(1), 244–267. [CrossRef] [Google Scholar]
- Kim, H. G., Lee, D. K., Park, C., Kil, S., Son, Y., & Park, J. H. (2015). Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environmental Earth Sciences, 73, 1385–1400. [CrossRef] [Google Scholar]
- Tan, M. L., Ficklin, D. L., Ibrahim, A. L., & Yusop, Z. (2014). Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. Journal of Water and Climate Change, 5(4), 676–695. [CrossRef] [Google Scholar]
- Nilawar, A. P., & Waikar, M. L. (2019). Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India. Science of the total environment, 650, 2685–2696. [CrossRef] [Google Scholar]
- Martin,P ., Osvaldo,C., Jean, P., Paul, L & Clair,H. (2007) . Climate Change 2007: Impacts, Adaptation and Vulnerability. Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. [Google Scholar]
- Anand, V., Oinam, B., & Parida, B. R. (2020). Uncertainty in hydrological analysis using multi-GCM predictions and multi-parameters under RCP 2.6 and 8.5 scenarios in Manipur River basin, India. Journal of Earth System Science, 129, 1–15. [CrossRef] [Google Scholar]
- Jain, C. K., & Singh, S. (2020). Impact of climate change on the hydrological dynamics of River Ganga, India. Journal of Water and Climate change, 11(1), 274–290. [CrossRef] [Google Scholar]
- Moors, E. J., Groot, A., Biemans, H., van Scheltinga, C. T., Siderius, C., Stoffel, M., … & Collins, D. N. (2011). Adaptation to changing water resources in the Ganges basin, northern India. Environmental Science & Policy, 14(7), 758–769. [CrossRef] [Google Scholar]
- Hassan, H., Aramaki, T., Hanaki, K., Matsuo, T., & Wilby, R. (1998). Lake stratification and temperature profiles simulated using downscaled GCM output. Water Science and Technology, 38(11), 217–226. [CrossRef] [Google Scholar]
- Wade, A. J., Whitehead, P. G., Hornberger, G. M., & Snook, D. L. (2002). On modelling the flow controls on macrophyte and epiphyte dynamics in a lowland permeable catchment: the River Kennet, southern England. Science of the Total Environment, 282, 375–393. [CrossRef] [Google Scholar]
- Rehana, S., & Mujumdar, P. P. (2011). River water quality response under hypothetical climate change scenarios in Tunga‐Bhadra river, India. Hydrological Processes, 25(22), 3373–3386. [CrossRef] [Google Scholar]
- Hosseini, N., Johnston, J., & Lindenschmidt, K. E. (2017). Impacts of climate change on the water quality of a regulated prairie river. Water, 9(3), 199. [CrossRef] [Google Scholar]
- Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current science, 346–353. [Google Scholar]
- Kumar, K. R., Sahai, A. K., Kumar, K. K., Patwardhan, S. K., Mishra, P. K., Revadekar, J. V., … & Pant, G. B. (2006). High-resolution climate change scenarios for India for the 21st century. Current science, 334-345. [Google Scholar]
- Hrdinka, T., Novický, O., Hanslík, E., & Rieder, M. (2012). Possible impacts of floods and droughts on water quality. Journal of Hydro-environment Research, 6(2), 145–150. [CrossRef] [Google Scholar]
- Caruso, B. S. (2002). Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. Journal of Hydrology, 257(1-4), 115–133. [CrossRef] [Google Scholar]
- Morecroft, M. D., Burt, T. P., Taylor, M. E., & Rowland, A. P. (2000). Effects of the 1995– 1997 drought on nitrate leaching in lowland England. Soil Use and Management, 16(2), 117-123. [CrossRef] [Google Scholar]
- Mosley, L. M. (2015). Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews, 140, 203–214. [CrossRef] [Google Scholar]
- Ayyappan Vasantha, P., Anil, L. S., Mohamedali, N., Dileep, R., & Nair, V. S. (2022). Impacts of Flood on Water Quality of Periyar River and Remediation Using Natural Fibers. Journal of Natural Fibers, 19(15), 12295–12308. [CrossRef] [Google Scholar]
- Meena, S. R., Chauhan, A., Bhuyan, K., & Singh, R. P. (2021). Chamoli disaster: pronounced changes in water quality and flood plains using Sentinel data. Environmental earth sciences, 80(17), 601. [CrossRef] [PubMed] [Google Scholar]
- Pringle, C. M., Freeman, M. C., & Freeman, B. J. (2000). Regional Effects of Hydrologic Alterations on Riverine Macrobiota in the New World: Tropical-Temperate Comparisons: The massive scope of large dams and other hydrologic modifications in the temperate New World has resulted in distinct regional trends of biotic impoverishment. While neotropical rivers have fewer dams and limited data upon which to make regional generalizations, they are ecologically vulnerable to increasing hydropower development and biotic patterns are emerging. BioScience, 50(9), 807–823. [CrossRef] [Google Scholar]
- Lim, K. Y., Zakaria, N. A., & Foo, K. Y. (2019). A shared vision on the historical flood events in Malaysia: integrated assessment of water quality and microbial variability. Disaster Advances, 12(8), 11–20. [Google Scholar]
- Erol, A., & Randhir, T. O. (2013). Watershed ecosystem modeling of land-use impacts on water quality. Ecological modelling, 270, 54–63. [CrossRef] [Google Scholar]
- Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic procedia, 4, 1001–1007. [CrossRef] [Google Scholar]
- Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of climate change over the Indian region: a report of the ministry of earth sciences (MOES), government of India (p. 226). Springer Nature. [Google Scholar]
- Stone Jr, B. (2009). Land use as climate change mitigation. [Google Scholar]
- Mohan, M., & Kandya, A. (2015). Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, 506, 453–465. [CrossRef] [Google Scholar]
- Dale, V. H. (1997). The relationship between land‐use change and climate change. Ecological applications, 7(3), 753–769. [CrossRef] [Google Scholar]
- Masroor, M., Avtar, R., Sajjad, H., Choudhari, P., Kulimushi, L. C., Khedher, K. M., … & Sahu, N. (2022). Assessing the influence of land use/land cover alteration on climate variability: an analysis in the Aurangabad District of Maharashtra State, India. Sustainability, 14(2), 642. [CrossRef] [Google Scholar]
- Hengade, N., & Eldho, T. I. (2019). Relative impact of recent climate and land cover changes in the Godavari river basin, India. Journal of Earth System Science, 128(4),94. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.