Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 01014
Number of page(s) 21
Section Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202455901014
Published online 08 August 2024
  1. C. A. Poorna and P. Prema, ‘Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues’, Biochem. Eng. J., 32, 2 (2006). [Google Scholar]
  2. M. Kutz, Handbook of farm, dairy and food machinery engineering, 2nd editio. London: Academic Press (2010). [Google Scholar]
  3. O. K. Türk, A. Zoungrana, and M. Çakmakci, ‘Chemical precipitation and membrane distillation process for the treatment of acidic anodic oxidation wastewaters’, J. Environ. Chem. Eng., p. 108036 (2022). [Google Scholar]
  4. E. Magnusson and L. Nilsson, ‘Interactions between hydrophobically modified starch and egg yolk proteins in solution and emulsions’, Food Hydrocoll., 25, 4 (2011). [Google Scholar]
  5. H. Yu and G. H. Huang, ‘Effects of sodium acetate as a pH control amendment on the composting of food waste’, Bioresour. Technol., 100, 6 (2009). [Google Scholar]
  6. F. Nemet, K. Perić, and Z. Lončarić, ‘Microbiological activities in the composting process : A review’, Columella J. Agric. Environ. Sci., 8, 2 (2021). [Google Scholar]
  7. H. I. Abdel-Shafy and M. S. M. Mansour, ‘Solid waste issue: Sources, composition, disposal, recycling, and valorization’, Egypt. J. Pet., 27, 4 (2018). [Google Scholar]
  8. K. A. Rosentrater, ‘Strategic methodology for advancing food manufacturing waste management paradigms’, in Environmentally Conscious Manufacturing IV, 5583, 274–285 (2004). [CrossRef] [Google Scholar]
  9. N. Azbar, A. Bayram, A. Filibeli, A. Muezzinoglu, F. Sengul, and A. Ozer, ‘A review of waste management options in olive oil production’, Crit. Rev. Environ. Sci. Technol., 34, 3 (2004). [Google Scholar]
  10. S. H. Hassan et al., ‘The methods of waste quantification in the construction sites (A review)’, AIP Conf. Proc., 2020, July 2020 (2018). [Google Scholar]
  11. X. M. Guo, E. Trably, E. Latrille, H. Carrere, and J.-P. Steyer, ‘Hydrogen production from agricultural waste by dark fermentation: a review’, Int. J. Hydrogen Energy, 35, 19 (2010). [Google Scholar]
  12. M. R. Kosseva, ‘Processing of food wastes’, in Advances in food and nutrition research, 58, 57-136 (2009). [CrossRef] [Google Scholar]
  13. R. Kothari, V. V Tyagi, and A. Pathak, ‘Waste-to-energy: A way from renewable energy sources to sustainable development’, Renew. Sustain. Energy Rev., 14, 9 (2010). [Google Scholar]
  14. A. Hamidi and Q. A. Shuokr, ‘Cleaner production approaches for sustainable development’, INESCO 2011, 14–15 October, Eng. Campus, USM, Penang (2011). [Google Scholar]
  15. B. H. Hameed, C. S. Goh, and L. H. Chin, ‘Process optimization for methyl ester production from waste cooking oil using activated carbon supported potassium fluoride’, Fuel Process. Technol., 90, 12 (2009). [Google Scholar]
  16. I. A. Abosede, O. A. Peter, and A.-A. T. Adunola, Biomass Valorization: Agricultural Waste in Environmental Protection, Phytomedicine and Biofuel Production. IntechOpen (2017). [Google Scholar]
  17. M. Herrero, A. Cifuentes, and E. Ibañez, ‘Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review’, Food Chem., 98, 1 (2006). [Google Scholar]
  18. H. H. Wijngaard, C. Rößle, and N. Brunton, ‘A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants’, Food Chem., 116, 1 (2009). [Google Scholar]
  19. Y. D. Hang, ‘Management and utilization of food processing wastes’, J. Food Sci., 69, 3 (2004). [Google Scholar]
  20. R. Reina, M. García-Sánchez, C. Liers, I. García-Romera, and E. Aranda, ‘An overview of fungal applications in the valorization of lignocellulosic agricultural by-products: The case of two-phase olive mill wastes’, in Mycoremediation and Environmental Sustainability, Springer, 213–238 (2018). [CrossRef] [Google Scholar]
  21. C. M. Galanakis, ‘Sustainable Applications for the Valorization of Cereal Processing By-Products’, Foods, 11, 2 (2022). [Google Scholar]
  22. D. Mladenović et al., ‘Bioprocessing of agro‐industrial residues into lactic acid and probiotic enriched livestock feed’, J. Sci. Food Agric. 99,12(2019). [Google Scholar]
  23. J. M. Cruz, E. Conde, H. Domínguez, and J. C. Parajó, ‘Thermal stability of antioxidants obtained from wood and industrial wastes’, Food Chem., 100, 3 (2007). [Google Scholar]
  24. S. Yurdugul and H. O. Najmalddin, ‘Vegetable and Fruit Waste Production Related to Consumption in Turkey and Certain Middle East Countries’ 5,1(2021). [Google Scholar]
  25. R. Priyadarshana, P. E. Kaliyadasa, S. Ranawana, and K. G. C. Senarathna, ‘Biowaste management: Banana fiber utilization for product development’, J. Nat. Fibers, 19, 4 (2022). [Google Scholar]
  26. M. U. Siqueira, B. Contin, P. R. B. Fernandes, R. Ruschel-Soares, P. U. Siqueira, and J. Baruque-Ramos, ‘Brazilian Agro-industrial Wastes as Potential Textile and Other Raw Materials: a Sustainable Approach’, Mater. Circ. Econ., 4, 1 (2022). [Google Scholar]
  27. K. J. Sannapapamma, S. Mariyappanavar, V. V Sangannavar, D. Jamadar, J. V Vastrad, and S. A. Byadagi, ‘Development and quality assessment of handmade papers using underutilized agro based natural fibres’, J Pharmacogn Phytochem, 9, 1410–1417, (2020). [Google Scholar]
  28. T. Mehmood, F. Nadeem, S. A. Qamar, M. Bilal, and H. Iqbal, ‘Bioconversion of agro-industrial waste into value-added compounds’, in Sustainable bioconversion of waste to value added products, Springer 349–368 (2021). [Google Scholar]
  29. N. Reddy and Y. Yang, ‘Biofibers from agricultural byproducts for industrial applications’, TRENDS Biotechnol., 23, 1 (2005). [Google Scholar]
  30. S. Sabiha-Hanim and N. A. A. Halim, ‘Sugarcane Bagasse Pretreatment Methods for Ethanol Production’, in Fuel Ethanol Production from Sugarcane, IntechOpen (2018). [Google Scholar]
  31. F. Ben Rebah, D. Prévost, A. Yezza, and R. D. Tyagi, ‘Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review’, Bioresour. Technol., 98, 18 (2007). [Google Scholar]
  32. A. L. G. de Lima, R. P. do Nascimento, E. P. da Silva Bon, and R. R. R. Coelho, ‘Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries’, Enzyme Microb. Technol., 37, 2 (2005). [Google Scholar]
  33. B. C. Behera, B. K. Sethi, R. R. Mishra, S. K. Dutta, and H. N. Thatoi, ‘Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review’, J. Genet. Eng. Biotechnol., 15, 1 (2017). [Google Scholar]
  34. A. S. S. Ibrahim and A. I. El-diwany, ‘Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme’, Aust. J. Basic Appl. Sci., 1, 4 (2007). [Google Scholar]
  35. P. Gélinas and J. Barrette, ‘Protein enrichment of potato processing waste through yeast fermentation’, Bioresour. Technol., 98, 5 (2007). [Google Scholar]
  36. H. Lei, H. Wang, T. Ning, W. Hao, X. Wang, and C. Xu, ‘Optimization of solid state fermentation process for protein enrichment of potato starch residue with mixed strains.’, Environ. Eng. Manag. J., 16, 7 (2017). [Google Scholar]
  37. G. A. Biziulevičius, ‘Mushroom decoctions, a waste product of food processing, may be a potentially valuable source of immunostimulatory and anticancer substances’, Med. Hypotheses, 3, 69 (2007). [Google Scholar]
  38. N. A. Sagar, S. Pareek, S. Sharma, E. M. Yahia, and M. G. Lobo, ‘Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization’, Compr. Rev. Food Sci. Food Saf., 17, 3 (2018). [Google Scholar]
  39. O. Sahu, ‘Assessment of sugarcane industry: suitability for production, consumption, and utilization’, Ann. Agrar. Sci., 16, 4 (2018). [Google Scholar]
  40. M. Faustino, M. Veiga, P. Sousa, E. M. Costa, S. Silva, and M. Pintado, ‘Agro-Food Byproducts as a New Source of Natural Food Additives’, Molecules, 24, 6 (2019). [Google Scholar]
  41. D. E. A. Tedesco, C. Conti, D. Lovarelli, E. Biazzi, and J. Bacenetti, ‘Bioconversion of fruit and vegetable waste into earthworms as a new protein source: The environmental impact of earthworm meal production’, Sci. Total Environ., 683 (2019). [Google Scholar]
  42. S. Mishra, P. K. Singh, S. Dash, and R. Pattnaik, ‘Microbial pretreatment of lignocellulosic biomass for enhanced biomethanation and waste management’, Biotech, 8, 11 (2018). [Google Scholar]
  43. H.-O. Boo, S.-J. Hwang, C.-S. Bae, S.-H. Park, B.-G. Heo, and S. Gorinstein, ‘Extraction and characterization of some natural plant pigments’, Ind. Crops Prod., 40 (2012). [Google Scholar]
  44. E. Cadoni, M. R. De Giorgi, E. Medda, and G. Poma, ‘Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes’, Dye. Pigment., 44, 1 (1999). [Google Scholar]
  45. N. L. Rozzi, R. K. Singh, R. A. Vierling, and B. A. Watkins, ‘Supercritical fluid extraction of lycopene from tomato processing byproducts’, J. Agric. Food Chem., 50, 9 (2002). [Google Scholar]
  46. A. Munir et al., ‘Evaluation of Antioxidant Potential of Vegetables Waste.’, Polish J. Environ. Stud., 27, 2 (2018). [Google Scholar]
  47. J. Berbel and A. Posadillo, ‘Review and analysis of alternatives for the valorisation of agro-industrial olive oil by-products’, Sustainability, 10, 1 (2018). [Google Scholar]
  48. L. B. Cangussu, J. C. Melo, A. S. Franca, and L. S. Oliveira, ‘Chemical characterization of coffee husks, a by-product of coffea arabica production’, Foods, 10, 12 (2021). [Google Scholar]
  49. M. F. Mendes, F. L. P. Pessoa, and A. M. C. Uller, ‘An economic evaluation based on an experimental study of the vitamin E concentration present in deodorizer distillate of soybean oil using supercritical CO2ʹ, J. Supercrit. Fluids, 23, 3 (2002). [Google Scholar]
  50. V. Stojceska, P. Ainsworth, A. Plunkett, and S. İbanogˇlu, ‘The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology’, J. Cereal Sci., 47, 3 (2008). [Google Scholar]
  51. S. Chongkhong, C. Tongurai, and P. Chetpattananondh, ‘Continuous esterification for biodiesel production from palm fatty acid distillate using economical process’, Renew. Energy, 34, 4 (2009). [Google Scholar]
  52. P. Felizardo, J. Machado, D. Vergueiro, M. J. N. Correia, J. P. Gomes, and J. M. Bordado, ‘Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock’, Fuel Process. Technol., 92, 6 (2011). [Google Scholar]
  53. A. Hayyan et al., ‘Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production’, Fuel Process. Technol., 92, 5 (2011). [Google Scholar]
  54. J. F. G. Oliveira et al., ‘Biodiesel production from waste coconut oil by esterification with ethanol: the effect of water removal by adsorption’, Renew. Energy, 35, 11(2010). [Google Scholar]
  55. F. Bamerni, I. Kamal, and K. Allaf, ‘Swell-Texturing assisted in-Situ Transesterification of Camelina Seeds Biodiesel’, Int. J. Eng. Res. Dev., 13, 9, (2017). [Google Scholar]
  56. M. A. Martín, J. A. Siles, A. F. Chica, and A. Martín, ‘Biomethanization of orange peel waste’, Bioresour. Technol., 101, 23 (2010). [Google Scholar]
  57. A. Wazir, Z. Gul, and M. Hussain, ‘Comparative Study of Various Organic Fertilizers Effect on Growth and Yield of Two Economically Important Crops, Potato and Pea’, Agric. Sci., 9, 6 (2018). [Google Scholar]
  58. R. Nurliyana, I. Syed Zahir, K. Mustapha Suleiman, M. R. Aisyah, and K. Kamarul Rahim, ‘Antioxidant study of pulps and peels of dragon fruits: a comparative study’, Int. Food Res. J., 17, 2 (2010). [Google Scholar]
  59. P. D. Pathak, S. A. Mandavgane, and B. D. Kulkarni, ‘Fruit peel waste: characterization and its potential uses’, Curr. Sci, 113, 3 (2017). [Google Scholar]
  60. M. A. Salma, N. Jahan, M. A. Islam, and M. M. Hoque, ‘Extraction of Pectin from lemon peel: Technology development’, J. Chem. Eng., 27, 2 (2012). [Google Scholar]
  61. Z. Zhongming, L. Linong, Y. Xiaona, Z. Wangqiang, and L. Wei, ‘UNEP Food Waste Index Report (2021). [Google Scholar]
  62. J. S. Binoj, R. E. Raj, S. A. Hassan, M. Mariatti, S. Siengchin, and M. R. Sanjay, ‘Characterization of discarded fruit waste as substitute for harmful synthetic fiber-reinforced polymer composites’, J. Mater. Sci., 55, 20 (2020). [Google Scholar]
  63. T. P. Trinidad et al., ‘Dietary fiber from coconut flour: A functional food’, Innov. food Sci. Emerg. Technol., 7, 4 (2006). [Google Scholar]
  64. S.-H. Tsai, C.-P. Liu, and S.-S. Yang, ‘Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes’, Renew. Energy, 32, 6 (2007). [Google Scholar]
  65. J. P. Essien, E. J. Akpan, and E. P. Essien, ‘Studies on mould growth and biomass production using waste banana peel’, Bioresour. Technol., 96, 13, (2005). [Google Scholar]
  66. D. P. Makris, G. Boskou, and N. K. Andrikopoulos, ‘Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts’, J. Food Compos. Anal., vol. 20, no. 2, pp. 125–132, 2007. [CrossRef] [Google Scholar]
  67. M. R. Wilkins, W. W. Widmer, and K. Grohmann, ‘Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol’, Process Biochem., 42, 12 (2007). [Google Scholar]
  68. W. C. Kim, D. Y. Lee, C. H. Lee, and C. W. Kim, ‘Optimization of narirutin extraction during washing step of the pectin production from citrus peels’, J. Food Eng., 63, 2 (2004). [Google Scholar]
  69. L. Liu, M. L. Fishman, J. Kost, and K. B. Hicks, ‘Pectin-based systems for colon-specific drug delivery via oral route’, Biomaterials, 24, 19 (2003). [Google Scholar]
  70. A. Bhatnagar, A. K. Minocha, and M. Sillanpää, ‘Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent’, Biochem. Eng. J., 48, 2 (2010). [Google Scholar]
  71. M. Dahiru, Z. U. Zango, and M. A. Haruna, ‘Cationic dyes removal using low-cost banana peel biosorbent’, Am. J. Mater. Sci., 8 (2018). [Google Scholar]
  72. L. Massimi, A. Giuliano, M. L. Astolfi, R. Congedo, A. Masotti, and S. Canepari, ‘Efficiency evaluation of food waste materials for the removal of metals and metalloids from complex multi-element solutions’, Materials (Basel)., 11, 3 (2018). [Google Scholar]
  73. E. Riggi and G. Avola, ‘Fresh tomato packinghouses waste as high added-value biosource’, Resour. Conserv. Recycl., 53, 1–2 (2008). [Google Scholar]
  74. G. Laufenberg, B. Kunz, and M. Nystroem, ‘Transformation of vegetable waste into value added products::(A) the upgrading concept;(B) practical implementations’, Bioresour. Technol., 87, 2 (2003). [Google Scholar]
  75. F. Langmaier, P. Mokrejs, K. Kolomaznik, and M. Mládek, ‘Biodegradable packing materials from hydrolysates of collagen waste proteins’, Waste Manag., 28, 3 (2008). [Google Scholar]
  76. T. T. Nguyen, A. R. Barber, K. Corbin, and W. Zhang, ‘Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals’, Bioresour. Bioprocess., 4, 1 (2017). [CrossRef] [Google Scholar]
  77. G. N. Susanto, ‘Crustacea: The Increasing Economic Importance of Crustaceans to Humans’, in Arthropods-Are They Beneficial for Mankind?, IntechOpen (2021). [Google Scholar]
  78. M. Yadav, P. Goswami, K. Paritosh, M. Kumar, N. Pareek, and V. Vivekanand, ‘Seafood waste: A source for preparation of commercially employable chitin/chitosan materials’, Bioresour. Bioprocess., 6, 1 (2019). [CrossRef] [Google Scholar]
  79. S.-L. Wang, T.-R. Chen, T.-W. Liang, and P.-C. Wu, ‘Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials’, Biochem. Eng. J., 48, 1(2009). [Google Scholar]
  80. T. Maoka, ‘Carotenoids as natural functional pigments’, J. Nat. Med., 74, 1, (2020). [CrossRef] [PubMed] [Google Scholar]
  81. C. M. Babu, R. Chakrabarti, and K. R. S. Sambasivarao, ‘Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids’, LWT-Food Sci. Technol., 41, 2 (2008). [Google Scholar]
  82. R. Winfried, M.-P. Roland, D. Alexander, and L.-K. Jürgen, ‘Usability of food industry waste oils as fuel for diesel engines’, J. Environ. Manage., 86, 3 (2008). [Google Scholar]
  83. T. Thamsiriroj and J. D. Murphy, ‘The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017ʹ, Renew. Energy, 36, 1 (2011). [Google Scholar]
  84. P. Stehlik, ‘Heat transfer as an important subject in waste-to-energy systems’, Appl. Therm. Eng., 27, 10 (2007). [Google Scholar]
  85. M. J. Rogoff and F. Screve, Waste-to-energy: technologies and project implementation, 2nd Edditi. Elsevier Inc. (2011). [Google Scholar]
  86. W.-T. Tsai, C.-C. Lin, and C.-W. Yeh, ‘An analysis of biodiesel fuel from waste edible oil in Taiwan’, Renew. Sustain. Energy Rev., 11, 5 (2007). [Google Scholar]
  87. P. S. Nigam and A. Singh, ‘Production of liquid biofuels from renewable resources’, Prog. energy Combust. Sci., 37, 1 (2011). [Google Scholar]
  88. A. Demirbas, ‘Competitive liquid biofuels from biomass’, Appl. Energy, 88, 1, (2011). [Google Scholar]
  89. E.-M. Aro, ‘From first generation biofuels to advanced solar biofuels’, Ambio, 45, 1 (2016). [Google Scholar]
  90. R. L. Skaggs, A. M. Coleman, T. E. Seiple, and A. R. Milbrandt, ‘Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States’, Renew. Sustain. Energy Rev., 82 (2018). [Google Scholar]
  91. H. Balat, ‘Prospects of biofuels for a sustainable energy future: a critical assessment’, Energy Educ. Sci. Technol. Part a-Energy Sci. Res., 24, 2 (2010). [Google Scholar]
  92. R. H. R. Branco, L. S. Serafim, and A. M. R. B. Xavier, ‘Second generation bioethanol production: On the use of pulp and paper industry wastes as feedstock’, Fermentation, 5, 1, (2019). [Google Scholar]
  93. M. F. Demirbas, M. Balat, and H. Balat, ‘Biowastes-to-biofuels’, Energy Convers. Manag., 52, 4 (2011). [Google Scholar]
  94. A. K. Chaurasia, P. Siwach, R. Shankar, and P. Mondal, ‘Effect of pre-treatment on mesophilic anaerobic co-digestion of fruit, food and vegetable waste’, Clean Technol. Environ. Policy (2021). [Google Scholar]
  95. S. Rezania et al., ‘Review on pretreatment methods and ethanol production from cellulosic water hyacinth’, BioResources, 12, 1 (2017). [CrossRef] [Google Scholar]
  96. B. C. Saha and M. A. Cotta, ‘Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol’, Biomass and Bioenergy, 32, 10 (2008). [Google Scholar]
  97. A. P. Gupte, M. Basaglia, S. Casella, and L. Favaro, ‘Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives’, Renew. Sustain. Energy Rev., 167 (2022). [Google Scholar]
  98. X. Y. Liu, H. B. Ding, S. Sreeramachandran, O. Stabnikova, and J. Y. Wang, ‘Enhancement of food waste digestion in the hybrid anaerobic solid-liquid system’(2008). [Google Scholar]
  99. M. Boluda-Aguilar, L. García-Vidal, F. del Pilar González-Castañeda, and A. López-Gómez, ‘Mandarin peel wastes pretreatment with steam explosion for bioethanol production’, Bioresour. Technol., 101, 10 (2010). [Google Scholar]
  100. S. Zabihi, R. Alinia, F. Esmaeilzadeh, and J. F. Kalajahi, ‘Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production’, Biosyst. Eng., 105, 3 (2010). [Google Scholar]
  101. M. K. Khan, M. Abert-Vian, A.-S. Fabiano-Tixier, O. Dangles, and F. Chemat, ‘Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel’, Food Chem., 119, 2 (2010). [Google Scholar]
  102. N. Sahraoui, M. A. Vian, M. El Maataoui, C. Boutekedjiret, and F. Chemat, ‘Valorization of citrus by-products using Microwave Steam Distillation (MSD)’, Innov. food Sci. Emerg. Technol., 12, 2 (2011). [Google Scholar]
  103. R. Murga, R. Ruiz, S. Beltrán, and J. L. Cabezas, ‘Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol’, J. Agric. Food Chem., 48, 8 (2000). [Google Scholar]
  104. V. Louli, N. Ragoussis, and K. Magoulas, ‘Recovery of phenolic antioxidants from wine industry by-products’, Bioresour. Technol., 92, 2 (2004). [Google Scholar]
  105. C. Liu and X. Cheng, ‘Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment’, Int. J. Hydrogen Energy, 35, 17 (2010). [Google Scholar]
  106. I. Kamal and K. Allaf, ‘Kinetics of Polyphenol Extraction From Sumac’, in 6th International CIGR Technical Symposium Toward a sustainable food chain, Food Process, Bioprocessing and Food Quality Management, 18th-20th April (2011). [Google Scholar]
  107. T. Jayachandra, C. Venugopal, and K. A. A. Appaiah, ‘Utilization of phytotoxic agro waste—Coffee cherry husk through pretreatment by the ascomycetes fungi Mycotypha for biomethanation’, Energy Sustain. Dev., 15, 1 (2011). [Google Scholar]
  108. E. J. Smid and L. G. M. Gorris, ‘Natural antimicrobials for food preservation’, in Handbook of food preservation, CRC Press (2020). [Google Scholar]
  109. A. Sridhar, M. Ponnuchamy, P. S. Kumar, and A. Kapoor, ‘Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review’, Environ. Chem. Lett., 19, 2 (2021). [Google Scholar]
  110. R. N. Pereira and A. A. Vicente, ‘Environmental impact of novel thermal and non-thermal technologies in food processing’, Food Res. Int., 43, 7 (2010). [Google Scholar]
  111. F. Chemat and M. K. Khan, ‘Applications of ultrasound in food technology: processing, preservation and extraction’, Ultrason. Sonochem., 18, 4 (2011). [Google Scholar]
  112. M. M. Hamoud-Agha and K. Allaf, ‘Instant controlled pressure drop (DIC) technology in food preservation: Fundamental and industrial applications’, in Food Preservation-From Basics to Advanced Technologies, IntechOpen (2019). [Google Scholar]
  113. F. Chemat and E. Vorobiev, Green Food Processing Techniques: Preservation, Transformation and Extraction. Academic Press (2019). [Google Scholar]
  114. A. V Cardello, H. G. Schutz, and L. L. Lesher, ‘Consumer perceptions of foods processed by innovative and emerging technologies: A conjoint analytic study’, Innov. Food Sci. Emerg. Technol., 8, 1 (2007). [Google Scholar]
  115. G. W. Gould, ‘Methods for preservation and extension of shelf life’, Int. J. Food Microbiol., 33, 1 (1996). [Google Scholar]
  116. Y. R. Sekhar, A. K. Pandey, I. M. Mahbubul, G. R. S. Avinash, V. Venkat, and N. R. Pochont, ‘Experimental study on drying kinetics for Zingiber Officinale using solar tunnel dryer with thermal energy storage’, Sol. Energy, 229 (2021). [Google Scholar]
  117. B. C. Khodifad and N. K. Dhamsaniya, ‘Drying of food materials by microwave energy-A review’, Int. J. Curr. Microbiol. Appl. Sci, 9 (2020). [Google Scholar]
  118. S. Ayofemi O. Adeyeye, T.J. Ashaolu, A.S. Babu. Food Drying: A Review. J. Agr. Revs. R-2537, 1–8 (2022). [Google Scholar]
  119. T. M. Afzal, T. Abe, and Y. Hikida, ‘Energy and quality aspects during combined FIR-convection drying of barley’, J. Food Eng., 42, 4 (1999). [Google Scholar]
  120. G. C. Antonio, D. G. Alves, P. M. Azoubel, F. E. X. Murr, and K. J. Park, ‘Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (Ipomoea batatas Lam.)’, J. Food Eng., 84, 3 (2008). [Google Scholar]
  121. A. Nath, P. K. Chattopadhyay, and G. C. Majumdar, ‘High temperature short time air puffed ready-to-eat (RTE) potato snacks: Process parameter optimization’, J. Food Eng., 80, 3 (2007). [Google Scholar]
  122. D. Gunathilake, D. P. Senanayaka, G. Adiletta, and W. Senadeera, ‘Drying of agricultural crops [in:] Advances in Agricultural Machinery and Technologies, Chen G’. CRC Press, Boca Raton, FL, USA(2018). [Google Scholar]
  123. N. R. Pereira, A. Marsaioli Jr, and L. M. Ahrné, ‘Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas’, J. Food Eng., 81, 1 (2007). [Google Scholar]
  124. D. Acierno, A. A. Barba, and M. d’Amore, ‘Heat transfer phenomena during processing materials with microwave energy’, Heat Mass Transf., 40, 5 (2004). [Google Scholar]
  125. F. Marra, L. Zhang, and J. G. Lyng, ‘Radio frequency treatment of foods: Review of recent advances’, J. Food Eng., 91. 4 (2009). [Google Scholar]
  126. X. Duan, M. Zhang, A. S. Mujumdar, and S. Wang, ‘Microwave freeze drying of sea cucumber (Stichopus japonicus)’, J. Food Eng., 96, 4 (2010). [Google Scholar]
  127. C. Ratti, ‘Hot air and freeze-drying of high-value foods: a review’, J. Food Eng., 49, 4 (2001). [Google Scholar]
  128. G. W. Oetjen and P. Haseley, ‘Freeze-Drying, Verlag’. Wiley-VHC, Weinheim (2004). [Google Scholar]
  129. M. L. Ranieri, J. R. Huck, M. Sonnen, D. M. Barbano, and K. J. Boor, ‘High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk’, J. Dairy Sci., 92, 10 (2009). [Google Scholar]
  130. A. M. Matser, B. Krebbers, R. W. van den Berg, and P. V Bartels, ‘Advantages of high pressure sterilisation on quality of food products’, Trends Food Sci. Technol., 15, 2 (2004). [Google Scholar]
  131. B. H. Lado and A. E. Yousef, ‘Alternative food-preservation technologies: efficacy and mechanisms’, Microbes Infect., 4, 4 (2002). [Google Scholar]
  132. F. Chemat et al., ‘A review of sustainable and intensified techniques for extraction of food and natural products’, Green Chem., 22, 8 (2020). [Google Scholar]
  133. I. Kamal, C. Besombes, K. Allaf. One-step processes for in situ transesterification to biodiesel and lutein extraction from microalgae Phaeodactylum using instant controlled pressure drop (DIC).Green Processing and Synthesis, 3, 6 (2014). [Google Scholar]
  134. F. Bamerni, I. Kamal, and K. Allaf, ‘How can “Instantaneous Pressure-Drop DIC” Texture Camelina Seeds, Increase Extraction Yields and Preserve Vegetal Oil Quality?’ Glo. Adv. Res. J. Eng. Technol. Innov. 6. 1 (2018). [Google Scholar]
  135. Y. Wang, P. Xu, L. Feng, X. Yang, and L. Qian, ‘Impact of instantaneous controlled pressure drop on microstructural modification of green tea and its infusion quality’, J. Food Sci. Technol., 51, 1 (2014). [Google Scholar]
  136. C. J. Doona, Case studies in novel food processing technologies: innovations in processing, packaging, and predictive modelling, First edit. Elsevier (2010). [Google Scholar]
  137. A. Režek Jambrak, T. Vukušić, F. Donsi, L. Paniwnyk, and I. Djekic, ‘Three pillars of novel nonthermal food technologies: Food safety, quality, and environment’, J. Food Qual., 2018 (2018). [Google Scholar]
  138. R. Lv, D. Liu, and J. Zhou, ‘Bacterial spore inactivation by non-thermal technologies: resistance and inactivation mechanisms’, Curr. Opin. Food Sci., 42, 31–36 (2021). [CrossRef] [Google Scholar]
  139. J. C. Cheftel, ‘High-pressure, microbial inactivation and food preservation’, Food Sci. Technol. Int., 1, 2–3 (1995). [Google Scholar]
  140. G. H. Zhou, X. L. Xu, and Y. Liu, ‘Preservation technologies for fresh meat–A review’, Meat Sci., 86, 1 (2010). [CrossRef] [Google Scholar]
  141. W. M. Elamin, J. B. Endan, Y. A. Yosuf, R. Shamsudin, and A. Ahmedov, ‘High Pressure Processing Technology and Equipment Evolution: A Review.’, J. Eng. Sci. Technol. Rev., 8, 5 (2015). [Google Scholar]
  142. M. Patterson, ‘High pressure treatments of foods’, in Encyclopedia of Food Microbiology, Second Edi., C. A. Batt and M.-L. Tottorello, Eds. USA Elsevier, 206–212. (2014). [Google Scholar]
  143. F. Devlieghere, L. Vermeiren, and J. Debevere, ‘New preservation technologies: possibilities and limitations’, Int. dairy J., 14, 4 (2004). [Google Scholar]
  144. Q. A. Syed, A. Ishaq, U. U. Rahman, S. Aslam, and R. Shukat, ‘Pulsed electric field technology in food preservation: A review’, J Nutr Heal. Food Eng, 6, 6 (2017). [Google Scholar]
  145. D. Gerlach, N. Alleborn, A. Baars, A. Delgado, J. Moritz, and D. Knorr, ‘Numerical simulations of pulsed electric fields for food preservation: a review’, Innov. Food Sci. Emerg. Technol., 9, 4 (2008). [Google Scholar]
  146. B. K. Tiwari, C. P. O’donnell, and P. J. Cullen, ‘Effect of non thermal processing technologies on the anthocyanin content of fruit juices’, Trends Food Sci. Technol., 20, 3–4 (2009). [CrossRef] [Google Scholar]
  147. J. Abida, B. Rayees, and F. A. Masoodi, ‘Pulsed light technology: a novel method for food preservation.’, Int. Food Res. J., 21, 3 (2014). [Google Scholar]
  148. I. M. Caminiti et al., ‘Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend’, Food Chem., 124, 4, (2011). [Google Scholar]
  149. Z. Berk, ‘Ionizing Irradiation and Other Non-Thermal Preservation Processes’, Food Process Eng. Technol., p. 609 (2018). [Google Scholar]
  150. N. Philip, B. Saoudi, M.-C. Crevier, M. Moisan, J. Barbeau, and J. Pelletier, ‘The respective roles of UV photons and oxygen atoms in plasma sterilization at reduced gas pressure: The case of N/sub 2/-O/sub 2/mixtures’, IEEE Trans. Plasma Sci., 30, 4 (2002). [Google Scholar]
  151. J. Wan, J. Coventry, P. Swiergon, P. Sanguansri, and C. Versteeg, ‘Advances in innovative processing technologies for microbial inactivation and enhancement of food safety–pulsed electric field and low-temperature plasma’, Trends Food Sci. Technol., 20, 9 (2009). [Google Scholar]
  152. T. Raviteja, S. K. Dayam, and J. Yashwanth, ‘A Study on Cold Plasma for Food Preservation’, J. Sci. Res. Reports, pp. 1–14 (2019). [Google Scholar]
  153. M. Gallo, L. Ferrara, and D. Naviglio, ‘Application of ultrasound in food science and technology: A perspective’, Foods, 7, 10 (2018). [Google Scholar]
  154. M. Vinatoru, ‘An overview of the ultrasonically assisted extraction of bioactive principles from herbs’, Ultrason. Sonochem., 8, 3 (2001). [Google Scholar]
  155. E. Chouliara, K. G. Georgogianni, N. Kanellopoulou, and M. G. Kontominas, ‘Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk’, Int. Dairy J., 20, 5 (2010). [Google Scholar]
  156. N. H. A. Nguyen and S. G. Anema, ‘Effect of ultrasonication on the properties of skim milk used in the formation of acid gels’, Innov. Food Sci. Emerg. Technol., 11, 4 (2010). [Google Scholar]
  157. R. Tahergorabi, K. E. Matak, and J. Jaczynski, ‘Application of electron beam to inactivate Salmonella in food: Recent developments’, Food Res. Int., 45, 2 (2012). [Google Scholar]
  158. K. A. da Silva Aquino, ‘Sterilization by gamma irradiation’, in Gamma radiation, 9, F. Adrovic, Ed. INTECH Open Access Publisher, 172–202 (2012), [Google Scholar]
  159. C. Jo, H. Kang, N. Y. Lee, J. H. Kwon, and M. W. Byun, ‘Pectin-and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation’, Radiat. Phys. Chem., 72, 6 (2005). [Google Scholar]
  160. X. Fan and B. A. Niemira, ‘Gamma ray, electron beam, and X-ray irradiation’, Food Saf. Eng., pp. 471–492 (2020). [Google Scholar]
  161. T. Bintsis, E. Litopoulou‐Tzanetaki, and R. K. Robinson, ‘Existing and potential applications of ultraviolet light in the food industry–a critical review’, J. Sci. Food Agric., 80, 6 (2000). [Google Scholar]
  162. T. Dai, M. S. Vrahas, C. K. Murray, and M. R. Hamblin, ‘Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections?’, Expert Rev. Anti. Infect. Ther., 10, 2 (2012). [Google Scholar]
  163. D. O. Ukuku and D. J. Geveke, ‘A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice’, Int. J. Food Microbiol., 138, 1–2 (2010). [Google Scholar]
  164. H. Jaeger, A. Janositz, and D. Knorr, ‘The Maillard reaction and its control during food processing. The potential of emerging technologies’, Pathol. Biol., 58, 3 (2010). [Google Scholar]
  165. F. Lima, K. Vieira, M. Santos, and P. M. de Souza, ‘Effects of Radiation Technologies on Food Nutritional Quality’, in Descriptive Food Science, IntechOpen, (2018). [Google Scholar]
  166. A. D. Tripathi, R. Sharma, A. Agarwal, and D. R. Haleem, ‘Nanoemulsions based edible coatings with potential food applications’, Int. J. Biobased Plast., 3, 1 (2021). [Google Scholar]
  167. S. C. Shit and P. M. Shah, ‘Edible polymers: challenges and opportunities’, J. Polym., vol. 2014 (2014). [Google Scholar]
  168. K. S. Miller and J. M. Krochta, ‘Oxygen and aroma barrier properties of edible films: A review’, Trends food Sci. Technol., 8, 7 (1997). [Google Scholar]
  169. V. Falguera, J. P. Quintero, A. Jiménez, J. A. Muñoz, and A. Ibarz, ‘Edible films and coatings: Structures, active functions and trends in their use’, Trends Food Sci. Technol., 22, 6 (2011). [Google Scholar]
  170. Y. Song, L. Liu, H. Shen, J. You, and Y. Luo, ‘Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala)’, Food Control, 22, 3–4 (2011). [Google Scholar]
  171. I.M Kamal. Edible Films and Coatings: Classification, Preparation, Functionality and Applications- A Review. Arc Org Inorg Chem Sci 4, 2 (2019). [Google Scholar]
  172. D. Z. Šuput, V. L. Lazić, S. Z. Popović, and N. M. Hromiš, ‘Edible films and coatings: Sources, properties and application’, Food Feed Res., 42, 1 (2015). [CrossRef] [Google Scholar]
  173. G. V Barbosa-Canovas and D. Bermúdez-Aguirre, ‘Novel food processing technologies and regulatory hurdles’, in Ensuring global food safety, Elsevier, pp. 281–288 (2010). [Google Scholar]
  174. L. Leistner and L. G. M. Gorris, ‘Food preservation by hurdle technology’, Trends Food Sci. Technol., 6, 2 (1995). [Google Scholar]
  175. J. Søltoft-Jensen and F. Hansen, ‘New chemical and biochemical hurdles’, in Emerging technologies for food processing, Elsevier, 2005, pp. 387–416. [Google Scholar]
  176. S. Singh and R. Shalini, ‘Effect of hurdle technology in food preservation: a review’, Crit. Rev. Food Sci. Nutr., 56, 4 (2016). [Google Scholar]
  177. M. Walkling-Ribeiro, O. Rodríguez-González, S. Jayaram, and M. W. Griffiths, ‘Microbial inactivation and shelf life comparison of ‘cold’hurdle processing with pulsed electric fields and microfiltration, and conventional thermal pasteurisation in skim milk’, Int. J. Food Microbiol., 144, 3 (2011). [Google Scholar]
  178. S. P. Chawla and R. Chander, ‘Microbiological safety of shelf-stable meat products prepared by employing hurdle technology’, Food Control, 15, 7 (2004). [Google Scholar]
  179. L. P. Cappato, A. M. D. Martins, E. H. R. Ferreira, and A. Rosenthal, ‘Effects of hurdle technology on Monascus ruber growth in green table olives: a response surface methodology approach’, brazilian J. Microbiol., 49, 1 (2018). [Google Scholar]
  180. J. Raso and G. V Barbosa-Cánovas, ‘Nonthermal preservation of foods using combined processing techniques’ (2003). [Google Scholar]
  181. L. Mogren et al., ‘The hurdle approach–A holistic concept for controlling food safety risks associated with pathogenic bacterial contamination of leafy green vegetables. A review’, Front. Microbiol., 9 (2018). [CrossRef] [Google Scholar]
  182. C. Charcosset, ‘Classical and recent applications of membrane processes in the food industry’, Food Eng. Rev., 13, 2 (2021). [Google Scholar]
  183. Q. Chen et al., ‘The Application of Membrane Separation Technology in the Dairy Industry’, Technol. Approaches Nov. Appl. Dairy Process., p. 23, 2018. [Google Scholar]
  184. K. V Kotsanopoulos and I. S. Arvanitoyannis, ‘Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods’, Crit. Rev. Food Sci. Nutr., 55, 9 (2015). [Google Scholar]
  185. D. S. Mohammad, I. Kamal. Performance evaluation of reverse osmosis process based on the potential synergy of (process design – RSM) methodologies. Ann. For. Res. 65,1(2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.