Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 04006
Number of page(s) 10
Section Structural Engineering & Concrete Technology
DOI https://doi.org/10.1051/e3sconf/202455904006
Published online 08 August 2024
  1. Ahmad, S.A., Ahmed, H.U., Ahmed, D.A. et al. (2023). “Predicting concrete strength with waste glass using statistical evaluations, neural networks, and linear/nonlinear models”. Asian J Civ Eng. https://doi.org/10.1007/s42107-023-00692-4. [Google Scholar]
  2. Ahmad, S.A., Rafiq, S.K., Ahmed, H.U. et al. (2023). “Innovative soft computing techniques including artificial neural network and nonlinear regression models to predict the compressive strength of environmentally friendly concrete incorporating waste glass powder”. Innov. Infrastruct. Solut., 8(119). https://doi.org/10.1007/s41062-023-01089-7. [Google Scholar]
  3. Ahmed, H.U., Mohammed, A.S., Faraj, R.H. et al. (2023). “Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles”. Neural Comput & Applic, 35, 12453–12479. https://doi.org/10.1007/s00521-023-08378-3. [Google Scholar]
  4. Ali Kaveh, Neda Khavaninzadeh. (2023). “Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength”. Structures, Volume 52, Pages 256-272. https://doi.org/10.1016/j.istruc.2023.03.178. [CrossRef] [Google Scholar]
  5. Emadaldin Mohammadi Golafshani, Ali Behnood, Mehrdad Arashpour. (2020). “Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer”. Construction and Building Materials, Vol. 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266. [CrossRef] [Google Scholar]
  6. Fatih Özcan, Cengiz D. Atiş, Okan Karahan, Erdal Uncuoğlu, Harun Tanyildizi. (2009). “Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete”. Advances in Engineering Software, Volume 40, Issue 9, Pages 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005. [CrossRef] [Google Scholar]
  7. Ghafor K, Ahmed HU, Faraj RH, Mohammed AS, Kurda R, Qadir WS, Mahmood W, Abdalla AA. (2022). “Computing Models to Predict the Compressive Strength of Engineered Cementitious Composites (ECC) at Various Mix Proportions”. Sustainability, 14(19), 12876. https://doi.org/10.3390/su141912876. [CrossRef] [Google Scholar]
  8. Naderpour, H.; Mirrashid, M. An innovative approach for compressive strength estimation of mortars having calcium inosilicate minerals. J. Build. Eng. 2018, 19, 205–215. [CrossRef] [Google Scholar]
  9. Sarıdemir, M. Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv. Eng. Softw. 2009, 40, 350–355. [CrossRef] [CrossRef] [Google Scholar]
  10. Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 2010, 24, 709–718. [CrossRef] [Google Scholar]
  11. Mhaya, A.M.;+ Huseien, G.F.; Faridmehr, I.; Abidin, A.R.Z.; Alyousef, R.; Ismail, M. Evaluating mechanical properties and impact resistance of modified concrete containing ground Blast Furnace slag and discarded rubber tire crumbs. Constr. Build. Mater. 2021,295, 123603. [CrossRef] [Google Scholar]
  12. Ray, S.; Haque, M.; Ahmed, T.; Nahin, T.T. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber. J.King Saud Univ. Eng. Sci. 2021, 4, 144–169. [Google Scholar]
  13. Yesilmen, S.; Tatar, B. Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: A case study on aggregate mining for concrete production. Case Stud. Constr. Mater. 2022, 17, e01372. [Google Scholar]
  14. Almasaeid, H.H.; Suleiman, A.; Alawneh, R. Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Stud. Constr. Mater. 2022, 16, e01080. [Google Scholar]
  15. Yang, D.S.; Park, S.K.; Lee, J.H. A prediction on mix proportion factor and strength of concrete using neural network. KSCE J. Civ. Eng. 2003, 7, 525–536. [CrossRef] [Google Scholar]
  16. Kim, J.I.; Kim, D.K. Application of neural networks for estimation of concrete strength. KSCE J. Civ. Eng. 2002, 6, 429–438. [CrossRef] [Google Scholar]
  17. Apostolopoulou, M.; Asteris, P.G.; Armaghani, D.J.; Douvika, M.G.; Lourenço, P.B.; Cavaleri, L.; Bakolas, A.; Moropoulou, A. Mapping and holistic design of natural hydraulic lime mortars. Cem. Concr. Res. 2020, 136, 106167. [CrossRef] [Google Scholar]
  18. Gupta, T.; Patel, K.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement 2019, 147, 106870. [CrossRef] [Google Scholar]
  19. DeRousseau, M.; Kasprzyk, J.; Srubar, W. Computational design optimization of concrete mixtures: A review. Cem. Concr. Res. 2018, 109, 42–53. [CrossRef] [Google Scholar]
  20. Agrawal, V.; Sharma, A. Prediction-of-Slump-in-Concrete-using-Artificial-Neural-Networks. World Acad. Sci. Eng. Technol. 2010, 4, 279–286. [Google Scholar]
  21. Rafiq, M.; Bugmann, G.; Easterbrook, D. Neural network design for engineering applications. Comput. Struct. 2001, 79, 1541–1552. [CrossRef] [Google Scholar]
  22. Flood, I.; Kartam, N. Neural Networks in Civil Engineering. I: Principles and Understanding. J. Comput. Civ. Eng. 1994, 8, 131–148. [CrossRef] [Google Scholar]
  23. Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.