Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 04008
Number of page(s) 12
Section Structural Engineering & Concrete Technology
DOI https://doi.org/10.1051/e3sconf/202455904008
Published online 08 August 2024
  1. S.T. John, ; Bijoy, K. Roy, ; Pradip Sarkar, R. Davis, IoT Enabled Real-time Monitoring System for Early-Age Compressive Strength of Concrete, (2019). https://doi.org/10.1061/(ASCE). [Google Scholar]
  2. G. Kampli, S. Chickerur, M. V Chitawadagi, Real-time in-situ strength monitoring of concrete using maturity method of strength prediction via IoT, (2023). https://doi.org/10.1016/j.matpr.2023.05.610. [Google Scholar]
  3. C.Y. Chang, S.S. Hung, Implementing RFIC and sensor technology to measure temperature and humidity inside concrete structures, Constr Build Mater 26 (2012) 628–637. https://doi.org/10.1016/j.conbuildmat.2011.06.066. [CrossRef] [Google Scholar]
  4. M. Ju, Z. Dou, J.W. Li, X. Qiu, B. Shen, D. Zhang, F.Z. Yao, W. Gong, K. Wang, Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives, Sensors 23 (2023). https://doi.org/10.3390/s23010543. [Google Scholar]
  5. S.T. John, ; Pradip Sarkar, R. Davis, A Long-Range Wide-Area Network System for Monitoring Early-Age Concrete Compressive Strength, (2022). https://doi.org/10.1061/(ASCE). [Google Scholar]
  6. N. Bhalla, S. Sharma, S. Sharma, R. Siddique, Monitoring early-age setting of silica fume concrete using wave propagation techniques, Constr Build Mater 162 (2018) 802–815. https://doi.org/10.1016/j.conbuildmat.2017.12.032. [CrossRef] [Google Scholar]
  7. Q. Feng, Y. Liang, G. Song, Real-time Monitoring of Early-Age Concrete Strength Using Piezoceramic-Based Smart Aggregates, J Aerosp Eng 32 (2019). https://doi.org/10.1061/(asce)as.1943-5525.0000939. [Google Scholar]
  8. R.M. Bhatawdekar, T.N. Singh, E. Tonnizam Mohamad, D.J. Armaghani, D.Z. Binti Abang Hasbollah, River Sand Mining Vis a Vis Manufactured Sand for Sustainability, 109 (2021) 143–169. https://doi.org/10.1007/978-3-030-60839-2_8/COVER. [Google Scholar]
  9. B. Arulmoly, C. Konthesingha, A. Nanayakkara, Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand, Constr Build Mater 297 (2021) 123784. https://doi.org/10.1016/J.CONBUILDMAT.2021.123784. [CrossRef] [Google Scholar]
  10. K. Sundaralingam, A. Peiris, N. Sathiparan, Manufactured sand as river sand replacement for masonry binding mortar, MERCon 2021 - 7th International Multidisciplinary Moratuwa Engineering Research Conference, Proceedings (2021) 403–408. https://doi.org/10.1109/MERCON52712.2021.9525718. [Google Scholar]
  11. Y. Li, Y. Liu, C. Jin, J. Mu, H. Li, J. Liu, Multi-scale creep analysis of river sand and manufactured sand concrete considering the influence of ITZ, Constr Build Mater 344 (2022) 128175. https://doi.org/10.1016/J.CONBUILDMAT.2022.128175. [CrossRef] [Google Scholar]
  12. Y. Duan, Q. Wang, Z. Yang, X. Cui, F. Liu, H. Chen, Research on the effect of steam curing temperature and duration on the strength of manufactured sand concrete and strength estimation model considering thermal damage, Constr Build Mater 315 (2022) 125531. https://doi.org/10.1016/J.CONBUILDMAT.2021.125531. [CrossRef] [Google Scholar]
  13. ASTM C1074 - Standard Practice for Estimating Concrete Strength by the Maturity Method 1, (n.d.). https://doi.org/10.1520/C1074-19E01. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.