Open Access
Issue |
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
|
|
---|---|---|
Article Number | 04050 | |
Number of page(s) | 13 | |
Section | Structural Engineering & Concrete Technology | |
DOI | https://doi.org/10.1051/e3sconf/202455904050 | |
Published online | 08 August 2024 |
- A. S. Ouedraogo, R. S. Frazier, and A. Kumar, “Comparative life cycle assessment of gasification and landfilling for disposal of municipal solid wastes,” Energies (Basel), vol. 14, no. 21, 2021, doi: 10.3390/en14217032. [Google Scholar]
- A. Micheal and R. R. Moussa, “Investigating the Economic and Environmental Effect of Integrating Sugarcane Bagasse (SCB) Fibers in Cement Bricks,” Ain Shams Engineering Journal, vol. 12, no. 3, 2021, doi: 10.1016/j.asej.2020.12.012. [Google Scholar]
- N. T. Hussien and A. F. Oan, “The use of sugarcane wastes in concrete,” Journal of Engineering and Applied Science, vol. 69, no. 1, 2022, doi: 10.1186/s44147-022-00076-6. [CrossRef] [Google Scholar]
- W. Deelaman, K. Chaochanchaikul, and K. Tungsudjawong, “Effect of Banana Fibers on Mechanical and Physical Properties of Light Weight Concrete Blocks,” Applied Mechanics and Materials, vol. 879, 2018, doi: 10.4028/www.scientific.net/amm.879.151. [CrossRef] [Google Scholar]
- M. Sandanayake, Y. Bouras, R. Haigh, and Z. Vrcelj, “Current sustainable trends of using waste materials in concrete—a decade review,” Sustainability (Switzerland), vol. 12, no. 22. 2020. doi: 10.3390/su12229622. [Google Scholar]
- N. T. Hussien and A. F. Oan, “The use of sugarcane wastes in concrete,” Journal of Engineering and Applied Science, vol. 69, no. 1, 2022, doi: 10.1186/s44147-022-00076-6. [CrossRef] [Google Scholar]
- N. Tirkey and G. B. Ramesh, “Experimental Study on the Banana Fiber Reinforced Concrete,” International Journal of Pure and Applied Mathematics, vol. 119, no. 18, 2018. [Google Scholar]
- S. Mehrzad, E. Taban, P. Soltani, S. E. Samaei, and A. Khavanin, “Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings,” Build Environ, vol. 211, 2022, doi: 10.1016/j.buildenv.2022.108753. [CrossRef] [Google Scholar]
- M. Shadheer Ahamed, P. Ravichandran, and A. R. Krishnaraja, “Natural Fibers in Concrete – A Review,” IOP Conf Ser Mater Sci Eng, vol. 1055, no. 1, 2021, doi: 10.1088/1757-899x/1055/1/012038. [CrossRef] [Google Scholar]
- Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, “Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review,” Frontiers in Materials, vol. 6. 2019. doi: 10.3389/fmats.2019.00226. [CrossRef] [Google Scholar]
- S. S. Solanke and P. Y. Pawade, “An investigation of mechanical properties of concrete by addition of sugarcane baggase ash and steel fiber,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1913/1/012069. [Google Scholar]
- R. Nurwidayati, A. F. Fardheny, and Asyifha, “Investigation on mechanical properties of fiber reinforced concrete,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/758/1/012016. [Google Scholar]
- F. Sheikh Khalid, H. S. Herman, and N. B. Azmi, “Properties of Sugarcane Fiber on the Strength of the Normal and Lightweight Concrete,” in MATEC Web of Conferences, 2017. doi: 10.1051/matecconf/201710301021. [CrossRef] [EDP Sciences] [Google Scholar]
- Nemkumar Banthia, Vivek Bindiganavile, John Jones, and Jeff Novak, “Fiber-reinforced concrete in precast concrete applications: Research leads to innovative products,” PCI Journal, vol. 57, no. 3, pp. 33–46, 2012. [CrossRef] [Google Scholar]
- C. Mansilla, M. Pradena, C. Fuentealba, and A. César, “Evaluation of mechanical properties of concrete reinforced with eucalyptus globulus bark fibres,” Sustainability (Switzerland), vol. 12, no. 23, 2020, doi: 10.3390/su122310026. [Google Scholar]
- Marwan Mostafa and Nasim Uddin, “Effect of Banana Fibers on the Compressive and Flexural Strength of Compressed Earth Blocks,” vol. 5, no. 1, Mar. 2015. [Google Scholar]
- Ishmail Shah, Jing Li, Shengyuan Yang, and Yubo Zhang, “Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete,” J Renew Mater, vol. 10, no. 5, pp. 1307–1320, Dec. 2021. [Google Scholar]
- M. U. Farooqi and M. Ali, “Contribution of plant fibers in improving the behavior and capacity of reinforced concrete for structural applications,” Constr Build Mater, vol. 182, 2018, doi: 10.1016/j.conbuildmat.2018.06.041. [Google Scholar]
- S. L. T. Sales, F. J. C. Aldamia, P. S. Gonzaga, A. J. S. Montesclaros, and C. P. Lawagon, “Properties of Fiber Cement Boards Influenced by BSCH (Banana Stem and Corn Husk) Fibers and Citric Acid Addition,” in Key Engineering Materials, vol. 913 KEM, 2022. doi: 10.4028/p-qv513a. [Google Scholar]
- Amjad Ali Khaskheli, Fareed Ahmed Memon, Athar Hussain Tunio, Nizakat Ali Abro, and Mazhar Hussain Tunio, “EFFECT OF BANANA FIBERS AS A REINFORCEMENT MATERIAL ON HARDENED PROPERTIES OF CONCRETE,” International Research Journal of Modernization in Engineering Technology and Science, vol. 4, no. 1, pp. 787–791, Jan. 2022. [Google Scholar]
- R. B. Mugume, A. Karubanga, and M. Kyakula, “Impact of Addition of Banana Fibres at Varying Fibre Length and Content on Mechanical and Microstructural Properties of Concrete,” Advances in Civil Engineering, vol. 2021, 2021, doi: 10.1155/2021/9422352. [CrossRef] [Google Scholar]
- J. Parameswaranpillai et al., “Thermal Properties of the Natural Fiber‐Reinforced Hybrid Polymer Composites: An Overview,” in Natural Fiber‐Reinforced Composites, 2022. doi: 10.1002/9783527831562.ch3. [Google Scholar]
- R. Ntenga, S. Saidjo, A. Wakata, P. Djoda, M. Tango, and E. Mfoumou, “Extraction, Applications and Characterization of Plant Fibers,” in Natural Fiber, 2022. doi: 10.5772/intechopen.103093. [Google Scholar]
- S. L. T. Sales, V. Abellana, C. F. Y. Lobarbio, I. C. Dano, and R. P. Balbutin Jr., “Extraction and Characterization of Cellulosic Fiber from Banana, Sugarcane, and Napier Grass,” Key Eng Mater, vol. 955, pp. 171–177, Sep. 2023, doi: 10.4028/p-HIj8iO. [CrossRef] [Google Scholar]
- M. P. León and F. Ramírez, “Morphological characterization of concrete aggregates by means of image analysis,” Revista Ingenieria de Construccion, vol. 25, no. 2, 2010. [Google Scholar]
- M. S. Reynolds, “A Relationship Between the Strengths of Type N Cubic Mortar A Relationship Between the Strengths of Type N Cubic Mortar Specimens and In-Situ Mortar Specimens and In-Situ Mortar,” 2019. [Online]. Available: https://scholarsarchive.byu.edu/etd [Google Scholar]
- A. Jihad et al., “Flexural and flexural toughness of fiber reinforced concrete-american standard specifications review,” GRD Journals-Global Research and Development Journal for Engineering, vol. 4, no. 3, 2019. [Google Scholar]
- H. Danso, “3 rd International Conference on Bio-Based Building Materials MICRO-ANALYSIS ON THE INTERNAL STRUCTURE OF FIBRE-SOIL COMPOSITE,” 2019. [Google Scholar]
- A. Adamczak-Bugno, G. Świt, and A. Krampikowska, “Scanning electron microscopy in the tests of fibrecement boards,” in MATEC Web of Conferences, 2018. doi: 10.1051/matecconf/201817402015. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Z. R. R. A. I. M. P. and S. M. S. M.J. Suriani, Delamination and manufacturing defects in natural fiberreinforced hybrid composites: A review, vol. 13. 2021. [Google Scholar]
- H. P. R. D. and A. A. A. R. Tampi, “Reinforced concrete mixture using abaca fiber,” Feb. 2020. [Google Scholar]
- X. Yao et al., “Review of Mechanical and Temperature Properties of Fiber Reinforced Recycled Aggregate Concrete,” vol. 12, Aug. 2022. [Google Scholar]
- M. Brebu, “Environmental Degradation of Plastic Composites with Natural Fillers—A Review,” vol. 12, pp. 1–166, Jan. 2020. [Google Scholar]
- M. Guthold et al., “A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers,” Cell Biochemistry and Biophysics, vol. 49, no. 3. 2007. doi: 10.1007/s12013-007-9001-4. [Google Scholar]
- F. Serra‐parareda, F. Vilaseca, R. Aguado, F. X. Espinach, Q. Tarrés, and M. Delgado‐aguilar, “Effective young’s modulus estimation of natural fibers through micromechanical models: The case of henequen fibers reinforced‐pp composites,” Polymers (Basel), vol. 13, no. 22, 2021, doi: 10.3390/polym13223947. [Google Scholar]
- Y. H. Kim, C. B. Park, B. Il Choi, T. Y. Shin, Y. Jun, and J. H. Kim, “Quantitative Measurement of Water Absorption of Coarse Lightweight Aggregates in Freshly-Mixed Concrete,” Int J Concr Struct Mater, vol. 14, no. 1, 2020, doi: 10.1186/s40069-020-00408-x. [Google Scholar]
- S. L. T. Sales, V. Y. Abellana, C. F. Y. Lobarbio, C. J. Milallos, M.- ar B. Del Negro, and L. J. A. Deiparine, “Assessment of the Behaviour and Performance of Napier Grass Fibers in a Natural Fiber Reinforced Concrete”, TWIST, vol. 19, no. 2, pp. 53–62, Apr. 2024, Accessed: Jun. 17, 2024. [Online]. Available: https://twistjournal.net/twist/article/view/198 [Google Scholar]
- A. Afraz and M. Ali, “Effect of Banana Fiber on Flexural Properties of Fiber Reinforced Concrete for Sustainable Construction,” 2021. doi: 10.3390/engproc2021012063. [Google Scholar]
- R. Alayash, O. Bagcal, and M. Baccay, “Structural Behavior of Phoenix Dactylifera L. Fibers Reinforced Concrete,” Journal of Applied Engineering Sciences, vol. 10, no. 2, pp. 101–110, Dec. 2020, doi: 10.2478/jaes-2020-0016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.