Open Access
Issue
E3S Web Conf.
Volume 560, 2024
The 10th International Conference on Energy Materials and Environment Engineering (ICEMEE 2024)
Article Number 01001
Number of page(s) 7
Section Mineral Resources Utilization and Thermodynamic Engineering
DOI https://doi.org/10.1051/e3sconf/202456001001
Published online 05 August 2024
  1. Hajian, R., Layeghi, M., Abbaspour Sani, K. (2012) Experimental study of nanofluid effects on the thermal performance with response time of heat pipe. Energ. Convers. Manage., 56, 63–68. https://doi.org/10.1016/j.enconman.2011.11.010 [CrossRef] [Google Scholar]
  2. Buschmann, M. H., Franzke, U. (2014) Improvement of thermosyphon performance by employing nanofluid. Int. J. Refrig., 40, 416–428. https://doi.org/10.1016/j.ijrefrig.2013.11.022 [CrossRef] [Google Scholar]
  3. Gallego, A., Herrera, B., Buitrago-Sierra, R., Zapata, C., Cacua, K. (2020) Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids. Nano-Struct. Nano-Objects, 22, 100448. https://doi.org/10.1016/j.nanoso.2020.100448 [CrossRef] [Google Scholar]
  4. Cacua, K., Buitrago-Sierra, R., Pabón, E., Gallego, A., Zapata, C., Herrera, B. (2020) Nanofluids stability effect on a thermosyphon thermal performance. Int. J. Therm. Sci., 153, 106347. https://doi.org/10.1016/j.ijthermalsci.2020.106347 [CrossRef] [Google Scholar]
  5. Grab, T., Gross, U., Franzke, U., Buschmann, M. H. (2014) Operation performance of thermosyphons employing titania and gold nanofluids. Int. J. Heat Mass Tran., 86, 352–364. https://doi.org/10.1016/j.ijthermalsci.2014.06.019 [Google Scholar]
  6. Sarafraz, M. M., Pourmehran, O., Yang, B., Arjomandi, M. (2019) Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew. Energ., 136, 884–895. https://doi.org/10.1016/j.renene.2019.01.035. [CrossRef] [Google Scholar]
  7. Das, S., Giri, A., Samanta, S., Kanagaraj, S. (2019) Role of graphene nanofluids on heat transfer enhancement in thermosyphon. J. Sci.: Adv. Mater. Devices, 4(1), 163–169. https://doi.org/10.1016/j.jsamd.2019.01.005 [CrossRef] [Google Scholar]
  8. Fulpagare, Y., Tsai, D.-Y., Wang, C.-C. (2022) Performance of two-phase loop thermosiphon with graphene nanofluid. Appl. Therm. Eng., 200, 117714. https://doi.org/10.1016/j.applthermaleng.2021.117714 [CrossRef] [Google Scholar]
  9. Afsari, K., Sarmasti Emami, M. R., Zahmatkesh, S., Jaromír Klemeš, J., Bokhari, A. (2023) Optimizing the thermal performance of the thermosyphon heat pipe for energy saving with graphene oxide nanofluid. Energy, 274: 127422. https://doi.org/10.1016/j.energy.2023.127422 [CrossRef] [Google Scholar]
  10. Sardarabadi, H., Zeinali Heris, S., Ahmadpour, A., Passandideh-Fard, M. (2019) Experimental investigation of a novel type of two-phase closed thermosyphon filled with functionalized carbon nanotubes/water nanofluids for electronic cooling application. Energ. Convers. Manage., 188, 321–332. https://doi.org/10.1016/j.enconman.2019.03.070 [CrossRef] [Google Scholar]
  11. Chen, Y.-J., Wang, P.-Y., Liu, Z.-H. (2013) Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. Int. J. Heat Mass Tran., 56(1), 59–68. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.048 [CrossRef] [Google Scholar]
  12. Khajehpour, E., Noghrehabadi, A. R., Nasab, A. E., Nabavi, S. M. H. (2020) Experimental investigation of the effect of nanofluids on the thermal resistance of a thermosiphon L-shape heat pipe at different angles. Int. Commun. Heat Mass, 113, 104549. https://doi.org/10.1016/j.icheatmasstransfer.2020.104549 [CrossRef] [Google Scholar]
  13. Alklaibi, A. M., Sundar, L. S., Sousa, A. C. M. (2021) Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. Int. Commun. Heat Mass, 120, 105057. https://doi.org/10.1016/j.icheatmasstransfer.2020.105057 [CrossRef] [Google Scholar]
  14. Chilbule, P. V., Dhole, L. P., Chavhan, G. R. (2023) Optimization of heat pipe charged with CuO nanofluid using Taguchi technique. Mater. Today: Proc.. https://doi.org/10.1016/j.matpr.2023.08.343 [Google Scholar]
  15. Moradgholi, M., Mostafa Nowee, S., Farzaneh, A. (2018) Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system. Sol. Energy, 164, 243–250. https://doi.org/10.1016/j.solener.2018.02.055 [CrossRef] [Google Scholar]
  16. Zhang, K.-l., Liu, Z.-H., Zheng, B.-c. (2016) A new 3D chip cooling technology using micro-channels thermosyphon with super-moist fluids and nanofluids. Energ. Convers. Manage., 128, 44–56. https://doi.org/10.1016/j.enconman.2016.09.065 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.