Open Access
Issue
E3S Web Conf.
Volume 560, 2024
The 10th International Conference on Energy Materials and Environment Engineering (ICEMEE 2024)
Article Number 02005
Number of page(s) 5
Section Water Resources Management and Ecological Environment Control
DOI https://doi.org/10.1051/e3sconf/202456002005
Published online 05 August 2024
  1. Sun, J, Cheng, G., Li, W., Sha, Y., Yang, Y (2013). On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens. 5. 1894–1911. [CrossRef] [Google Scholar]
  2. Panxing He, Zongjiu Sun, Zhiming Han (2021). Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environmental Science and Pollution Research 28, 42516–42532. [CrossRef] [PubMed] [Google Scholar]
  3. Chang, X.L.; Lu, C.X.; Gao, Y.B (2003). Impacts of human economic activities on wind and sand environment in Kerqin sandy land. Resour. Sci 25, 78–83. -(In Chinese) [Google Scholar]
  4. Lawler, J.J (2009). Climate change adaptation strategies for resource managementand conservation planning. Ann. N. Y. Acad. Sci 1162, 79–98. -98. [CrossRef] [PubMed] [Google Scholar]
  5. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G (2002). Overview of the radiometric and biophysical performance of the MODIS Remote Sens. Environ. 83, 195–213. [Google Scholar]
  6. Wang, H.; Liu, G.; Li, Z.; Ye, X.; Fu, B.; Lü, Y (2017). Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China. Sustainability 9, 1853. [CrossRef] [Google Scholar]
  7. Evans, J.; Geerken, R (2004). Discrimination between climate and human-induced dryland degradation. j. Arid Environ 57, 535–554. [CrossRef] [Google Scholar]
  8. X. Tong et al (2017). International Journal of Applied Earth Observation and Geoinformation 54, 105–113. [CrossRef] [Google Scholar]
  9. Rui Liu, Linlin Xiao, Zhe Liu, Jicai Daia (2018). Quantifying the relative impacts of climate and human activities on vegetation changes at the regional scale. Ecological Indicators. 93, 91–99. [CrossRef] [Google Scholar]
  10. Zhang, G.L., Dong, J.W., Xiao, X.L., Hu, Z.M., Sheldon, S (2012). Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering 38(1), 20–29. [CrossRef] [Google Scholar]
  11. Sui L Y, Ming C B. (2009). The study framework of land use/cover change based on sustainable development in China. Geographical Research 21(3), 324–330. [Google Scholar]
  12. Wang, J. Wang, K. Zhang, M. Zhang, C (2015). Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol.Eng 81, 451–461. [CrossRef] [Google Scholar]
  13. Detsch, F. Otte, I. Appelhans, T. Hemp, A. Nauss, T (2016) Seasonal and long-term vegetation dynamics from 1km GIMMS-based NDVI time series at Mt. kilimanjaro, Tanzania.Remote Sens.Environ. 178, 70–83. [CrossRef] [Google Scholar]
  14. Liu, L. Yang, X. Zhou, H. et al (2018). Evaluating the utiliy of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. sci. Total Environ. 625, 1208. [CrossRef] [Google Scholar]
  15. Song, Y.I.; Ma, M.G. A statistical analysis of the relationship between climatic factors and the normalized difference vegetation index in China. Int. J. Remote Sens. 2011, 32, 3947–3965. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.