Open Access
Issue |
E3S Web Conf.
Volume 560, 2024
The 10th International Conference on Energy Materials and Environment Engineering (ICEMEE 2024)
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 7 | |
Section | Water Resources Management and Ecological Environment Control | |
DOI | https://doi.org/10.1051/e3sconf/202456002016 | |
Published online | 05 August 2024 |
- Fu H. (1998) Challenge and development trends to fu ture aero engine materials. https://qikan.cqvip.com/Qikan/Article/Detail?id=3317893&from=Qikan_Search_Index [Google Scholar]
- Yi Z, Tan D and Tang Y, et al. (2022) Microstructure and oxidation resistance of in-situ silicide composite coating on Mo-2.5 Zr-2.5 ZrO2-xW (x= 0, 20, 30) s ubstrate. J. Surface and Coatings Technology, 451: 129038. https://doi.org/10.1016/j.surfcoat.2022.129038. [CrossRef] [Google Scholar]
- Cai Z, Shen H and Liu S, et al. (2020) Review and pr ospect of refractory metal alloys and high temperatur e oxidation resistance coatings. J. The Chinese Journ al of Nonferrous Metals, 30(09): 1991–2010. http://www.ysxbcn.com/paper/paperview.aspx?id=paper_321802 [CrossRef] [Google Scholar]
- Tang Z, Guo T and Fu Y, et al. (2014) Research pres ent situation and the development prospect of nickelbased superalloy. J. Metal World, 1: 36–40. https://xueshu.baidu.com/usercenter/paper/show?paperid=9fe8595d4be07ed34615de66c9cceb65&site=xueshu_se [Google Scholar]
- Wang H, An Y and Li C, et al. (2011) Research prog ress of Ni-based superalloys. J. Materials Review, 25 (S2): 482–486. https://xueshu.baidu.com/usercenter/paper/show?paperid=ef84e33f52ddf066834ebe8208daa4dc [Google Scholar]
- Sato J, Omori T and Oikawa K, et al. (2006) Cobaltbase high-temperature alloys. J. Science, 312(5770): 90–91. https://doi.org/10.1126/science.1121738. [Google Scholar]
- Zhang X, Ma Q and Zhang H, et al. (2024) Research progress on composition design of novel cobalt based superalloy. J. Materials China, 43(03): 230–237. http://www.mat-china.com/oa/darticle.aspx?type=view&id=202107062 [Google Scholar]
- Liu Z, Xin S and Zhao Y. (2023) Research progress o n the creep resistance of high-temperature titanium al loys: a review. J. Metals, 13(12): 1975. https://doi.org/10.3390/met13121975. [CrossRef] [Google Scholar]
- Zhang T, Yue K and Yu J, et al. (2023) Research ove rview and application of high-temperature titanium a lloys and titanium-based (Ti-Al) materials for aerosp ace. In: The 14th CSM Steel Congress. Chongqing. 6. https://www.yongyiti.com/ziliao/516.html [Google Scholar]
- Li X, Zhao J and Liu S, et al. (2020) Research progre ss of high temperature titanium alloys for aviation. I n: 2020 China Foundry Congress. 109–113. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJXZ202011001020.htm [Google Scholar]
- Gao J, Wang Y and Chen G, et al. (2007) Microstruc ture and properties of Si, Al, K-doped molybdenum wire. J. Powder Metallurgy Technology, 25(1): 7–12, 16. https://en.cnki.com.cn/Article_en/CJFDTOTALFMYJ200701001.htm [Google Scholar]
- Fu M, Zhang Y and Zhang G, et al. (2023) Research progress of high temperature antioxidant modified sil icide coatings of molybdenum and its alloys. J. Mater ials Reports, 37(03): 177–184. http://www.mater-rep.com/EN/10.11896/cldb.21030219 [Google Scholar]
- Karahan T, Ouyang G and Ray P, et al. (2017) Oxida tion mechanism of W substituted Mo-Si-B alloys. J. I ntermetallics, 87: 38–44. https://doi.org/10.1016/j.intermet.2017.04.005. [Google Scholar]
- Kong Y, Wang C and Chen X, et al. (2023) Review o f research progress on Mo–Si–B alloys. J. Materials, 16(15): 5495. https://doi.org/10.3390/ma16155495. [CrossRef] [Google Scholar]
- Gatzen C, Smokovych I and Scheffler M, et al. (2021) Oxidation‐resistant environmental barrier coatings for Mo‐based alloys: a review. J. Advanced Enginee ring Materials, 23(04): 2001016. https://doi.org/10.1002/adem.202001016. [CrossRef] [Google Scholar]
- Li B, Lin X and Li R, et al. (2018) High-temperature oxidation resistance of Mo-Si-B alloys with different B contents. J. Acta Metallurgica Sinica, 54(12): 1792–1800. https://en.cnki.com.cn/Article_en/CJFDTotal-JSXB201812009.htm [Google Scholar]
- Wang Y, Wang D and Sun A, et al. (2012) The advan ce on the oxidation resistance coatings of molybdenu m and its alloys. J. Materials Review, 26(01): 137–141. https://en.cnki.com.cn/Article_en/CJFDTOTAL-CLDB201201031.htm [Google Scholar]
- Chakraborty S, Banerjee S and, Singh K, et al. (2008) Studies on the development of protective coating on TZM alloy and its subsequent characterization. J. Jou rnal of Materials Processing Technology, 207(1-3): 240–247. https://doi.org/10.1016/j.jmatprotec.2007.12.075. [CrossRef] [Google Scholar]
- Alam M, Venkataraman B and Sarma B, et al. (2009) MoSi2 coating on Mo substrate for short-term oxidat ion protection in air. J. Journal of alloys and compou nds, 487(1-2): 335–340. https://doi.org/10.1016/j.jallcom.2009.07.141. [CrossRef] [Google Scholar]
- Xu J, Zhou C and Gong S, et al. (2002) Codeposition of aluminum and silicon on pure molybdenum substr ate using halide activated pack cementation treatmen ts. J. Acta Metallurgica Sinica(English Edition), 15 (2): 167–171. https://www.cnki.com.cn/Article/CJFDTotal-JSXY200202004.htm [Google Scholar]
- Yoon J, Kim G and Han J, et al. (2005) Low-tempera ture cyclic oxidation behavior of MoSi2/Si3N4 nanoco mposite coating formed on Mo substrate at 773 K. J. Surface and Coatings Technology, 200(7): 2537–2546. https://doi.org/10.1016/j.surfcoat.2005.01.035. [CrossRef] [Google Scholar]
- Nyutu E, Kmetz M and Suib S. (2006) Formation of MoSi2–SiO2 coatings on molybdenum substrates by CVD/MOCVD. J. Surface and Coatings Technology, 200(12-13): 3980–3986. https://doi.org/10.1016/j.surfcoat.2005.02.212. [CrossRef] [Google Scholar]
- Zhang Y, Wang Q and Wang D, et al. (2023) Effect o f reaction temperature on the molten salt electrodepo sition of silicide coating on molybdenum substrate an d its oxidation behavior. J. Journal of The Electroche mical Society, 170(8): 082503. https://doi.org/10.1149/1945-7111/acf076. [CrossRef] [Google Scholar]
- Cheng T, Wang Z and Dai S, et al. (2022) Effect of S iC whiskers on thermal cycling performance of YSZbased sealing coating. J. Ceramics International, 48 (5): 6443–6452. https://doi.org/10.1016/j.ceramint.202111.188. [CrossRef] [Google Scholar]
- Cai Z, Liu S and Xiao L, et al. (2017) Oxidation beha viour and microstructural evolution of a slurry sintere d Si-Mo coating on Mo alloy at 1650° C. J. Surface a nd Coatings Technology, 324: 182–189. https://doi.org/10.1016/j.surfcoat.2017.05.054. [CrossRef] [Google Scholar]
- Huang Y. (2023) Preparation of MoSi_2 composite c oatings and research on oxidation resistance and abla tion properties. https://cdmd.cnki.com.cn/Article/CDMD-10674-1023701172.htm. [Google Scholar]
- Yoon J, Kim G and Byun J, et al. (2003) Effect of Cl /H input ratio on the growth rate of MoSi2 coatings fo rmed by chemical vapor deposition of Si on Mo subs trates from SiCl4–H2 precursor gases. J. Surface and Coatings Technology, 172(2-3): 176–183. https://doi.org/10.1016/s0257-8972(03)00428-6. [CrossRef] [Google Scholar]
- Sun J, Fu Q and, Guo L, et al. (2016) Effect of filler on the oxidation protective ability of MoSi2 coating f or Mo substrate by halide activated pack cementation. J. Materials & Design, 92: 602–609. https://doi.org/10.1016/j.matdes.201512.079. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.