Open Access
Issue
E3S Web Conf.
Volume 561, 2024
The 8th International Conference on Energy, Environment and Materials Science (EEMS 2024)
Article Number 01029
Number of page(s) 5
Section Energy System Simulation and Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202456101029
Published online 09 August 2024
  1. Kolay, P.K.; Singh, D.N. Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Department of Civil Engineering Geotechnical Engineering Division Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India 2001, Vol.31, 539–542, doi: 10.1016/s0008-8846(01)00457-4. [Google Scholar]
  2. Acar, I.; Atalay, M.U. Recovery potentials of cenospheres from bituminous coal fly ashes. Fuel 2016, 180, 97–105, doi:10.1016/j.fuel.2016.04.013. [CrossRef] [Google Scholar]
  3. Yoriya; Intana; Tepsri. Separation of Cenospheres from Lignite Fly Ash Using Acetone-Water Mixture. Applied Sciences 2019, 9, doi:10.3390/app9183792. [Google Scholar]
  4. Blissett, R.S.; Rowson, N.A. A review of the multicomponent utilisation of coal fly ash. Fuel 2012, 97, 1–23, doi: 10.1016/j.fuel.2012.03.024. [CrossRef] [Google Scholar]
  5. Borm, P.J.A. Toxicity and occupational health hazards of coal fly ash (CFA). A review of data and comparison to coal mine dust. Department of Health Risk Analysis & Toxicology, University of Maastricht, PO Box 616, 6200 MD, Maastricht, The Netherlands 1997, Vol. 41, 659–676, doi:10.1093/annhyg/41.6.659. [Google Scholar]
  6. Ranjbar, N.; Kuenzel, C. Cenospheres: A review. Fuel 2017, 207, 1–12, doi: 10.1016/j.fuel.2017.06.059. [CrossRef] [Google Scholar]
  7. Hirajima, T.; Petrus, H.T.B.M.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. International Journal of Mineral Processing 2010, 95, 18–24, doi: 10.1016/j.minpro.2010.03.004. [CrossRef] [Google Scholar]
  8. Petrus, H.T.B.M.; Hirajima, T.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Performance of dryseparation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit. International Journal of Mineral Processing 2011, 98, 15–23, doi: 10.1016/j.minpro.2010.09.002. [CrossRef] [Google Scholar]
  9. Zhou, F.; Sun, G.; Zhang, Y.; Ci, H.; Wei, Q. Experimental and CFD study on the effects of surface roughness on cyclone performance. Separation and Purification Technology 2018, 193, 175–183, doi:10.1016/j.seppur.2017.11.017. [CrossRef] [Google Scholar]
  10. Yao, Y.; Huang, Z.; Zhang, M.; Yang, H.; Lyu, J.; Wang, J. Effects of the Y-shape stud and outer insulating layer on heat dissipation and wall temperature of the hot cyclone in a circulating fluidized bed boiler. Applied Thermal Engineering 2022, 204, doi:10.1016/j.applthermaleng.2021.117989. [CrossRef] [Google Scholar]
  11. Pukkella, A.K.; Cilliers, J.J.; Hadler, K. A comprehensive review and recent advances in dry mineral classification. Minerals Engineering 2023, 201, doi:10.1016/j.mineng.2023.108208. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.