Open Access
Issue
E3S Web Conf.
Volume 561, 2024
The 8th International Conference on Energy, Environment and Materials Science (EEMS 2024)
Article Number 02011
Number of page(s) 9
Section Intelligent Environment Planning and Green Development
DOI https://doi.org/10.1051/e3sconf/202456102011
Published online 09 August 2024
  1. Rai P, Barman A.G. Optimizing the design of straight bevel gear with reduced scoring effect[J]. Engineering Computations, 2020, 37(7): 2391–2409. http://dx.doi.org/10.1108/ec-06-2019-0250 [CrossRef] [Google Scholar]
  2. Junfeng Jia, Yanchun Zhao and Huizi Yang. Development of high-performance gears for heavyduty transmissions based on gear reshaping [J]. Automobile & Parts, 2018,14: 70–71. http://dx.doi.org/10.3969/j.issn.1006-0162.2018.14.027 [Google Scholar]
  3. Mu Y.M, He X.M and Fang Z.D. An innovative ease-off flank modification method based on the dynamic performance for high-speed spiral bevel gear with high-contact-ratio[J]. Mechanism and Machine Theory, 2021,162: 1–18. http://dx.doi.org/10.1016/j.mechmachtheory.2021.104345 [Google Scholar]
  4. Zhenrong Tao. Adjustment of gear design parameters and realization [J]. Mechanical science and technology for aerospace engineering, 1989,17–19. https://wenku.baidu.com/view/e34da0b9d05abe23482fb4daa58da0116d171f7f.html?_wkts_=1713773864802 [Google Scholar]
  5. Cong Wu, Daqing Li and Bingyang Wei. Meshing performance of face gear drive based on pinion asymmetric double crowned[J]. Aerospace Power, 2012,27(11) : 2629–2634. http://dx.doi.org/10.13224/j.cnki.jasp.2012.11.009 [Google Scholar]
  6. Mu Y.M, L.W. Li, Fang Z.D., etc. A novel tooth surface modification method for spiral bevel gears with higher-order transmission error[J]. Mechanism and Machine Theory, 2018, 126: 49–60. http://dx.doi.org/10.1016/j.mechmachtheory.2018.04.001 [CrossRef] [Google Scholar]
  7. Ruifeng Zhang. Performance Analysis and Modification Design of Hypoid Gears [D]. Chang’an University, 2017. https://webvpn.bit.edu.cn/https/77726476706e69737468656265737421fbf952d2243e635930068cb8/kcms2/article/abstract?v=QuBpG80dbeDew6AQ-7veW1tN0ZFeZHM6_ACStKbGwA6wZeLn6fr1pgUt4Z1_enTvZ4iGrtSGjz8rQpEnOK77VaZwyNOsfSh2rCEnBWBftnzmdGiSViDt9KHRoa3DYJsZI8zrzd3DlgoU6XUldq9Hdw==&uniplatform=NZKPT&language=CHS [Google Scholar]
  8. Bingming Wang. Parameter optimized design of gears [J]. Management & Technology of SME, 2015,296–297. http://dx.doi.org/10.3969/j.issn.1673-1069.2015.26.256 [Google Scholar]
  9. Zhiquan Chang. Research on Explicit Dynamic Simulation of Helical Gear Meshing and Influence of Structure Parameter on the Gear Performance [J]. Mechanical Transmission, 2013,37(11): 47–50+93. http://dx.doi.org/10.16578/j.issn.1004.2539.2013.11.021 [Google Scholar]
  10. Lu Gao. Issues to consider when selecting design parameters for helical cylindrical gears [J]. Technology and Economic Guide, 2016,34: 81–82. https://wenku.baidu.com/view/e34da0b9d05abe23482fb4daa58da0116d171f7f.html?_wkts_=1713879566 486 [Google Scholar]
  11. Chen Z, Shao Y and Su D. Dynamic simulation of planetary gear set with flexible spur ring gear[J]. Journal of Sound and Vibration, 2013, 332(26): 7191–7204. http://dx.doi.org/10.1016/j.jsv.2013.07.026 [CrossRef] [Google Scholar]
  12. Shuo Wang, Bing Yuan, Wenbo Xu, etc. Contact Finite Element Analysis of Two-stage Gear Transmission System and Offset Design of Gear Web [J/OL]. Mechanical Science and Technology for Aerospace Engineering. http://dx.doi.org/10.13433/j.cnki.1003-8728.20230369 [Google Scholar]
  13. Yongjun Wu and Jianjun Wang. A contact finite element method for dynamic analysis of continuous engaged gear pairs [J]. Aerospace Power,2013, (5):1192–1200. http://dx.doi.org/10.13224/j.cnki.jasp.2013.05.005 [Google Scholar]
  14. Yongjun Wu, Yue Liang, Yan Yang, etc. Dynamic meshing characteristics of a gear pair using contact finite element method [J]. vibration and shock,2012, 31 (19) : 61–67. http://dx.doi.org/10.13465/j.cnki.jvs.2012.19.019 [Google Scholar]
  15. Maopeng Cao, Jinyuan Tang and Duncai Lei. Finite Element Simulation Analysis for Dynamic Meshing Force of Straight Tooth Face Gear [J]. Mechanical Transmission,2015,39(4): 96–101. http://dx.doi.org/10.16578/j.issn.1004.2539.2015.04.023 [Google Scholar]
  16. Stoyanov S, Dobrev V and Dobreva A. Finite elements contact modelling of planetary gear trains[J]. Iop Conference Series: Materials Science and Engineering, 2017, 252(1): 012034. http://dx.doi.org/10.1088/1757-899x/252/1/012034 [CrossRef] [Google Scholar]
  17. Zhiyang Lei, Yanqi Chen, Ji Xia, etc. Analysis of Time-varying Meshing Stiffness and Dynamic Excitation Characteristics of Cross Connection Gears Using Contact Finite Element Method [J]. Noise and Vibration Control,2023, 43(6): 69–73. http://dx.doi.org/10.3969/j.issn.1006-1355.2023.06.011 [Google Scholar]
  18. Tao Zhang, Jianjun Wang and Yongjun Wu. Dynamic Characteristics Study of Geared Rotor System Using Contact Finite Element Analysis Method [J]. Mechanical Engineering,2015,51(19):40–46. https://kns.cnki.net/kcms/detail/11.2187.th.20150417.1129.065.html [CrossRef] [Google Scholar]
  19. Yanbin Du, Aoting Wang, Kun He, etc. Tooth Contact Analysis of Helical Gears with Longitudinal Modification Considering Twist Errors [J/OL]. Mechanical Engineering,2023,59:1–12. https://kns.cnki.net/kcms/detail/11.2187.TH.20231216.1218.016.html [Google Scholar]
  20. Ericson T.M and Parker R.G. Experimental measurement and finite element simulation of elastic-body vibration in planetary gears[J]. Mechanism and Machine Theory, 2021, 160: 1–23. http://dx.doi.org/10.1016/j.mechmachtheory.2021.104264 [CrossRef] [Google Scholar]
  21. Lilin Wei, Bin Liu, Xiaoman Zhao, etc. Parametric Modeling and Finite Element Contact Analysis of Curved Bevel Gears [J]. Mechanical design and manufacturing engineering, 2023, 52(4): 1–6. http://dx.doi.org/10.3969/j.issn.2095-509X.2023.04.001 [Google Scholar]
  22. Yanqi Chen, Xiuchang Huang, Hongxing Hua, etc. Analysis of Dynamic Responses and Spectrum Characteristics of Helical Gear Meshing Using Contact Finite Element Method [J]. Noise and Vibration Control, 2022, 42(6): 45–50. http://dx.doi.org/10.3969/j.issn.1006-1355.2022.06.008 [Google Scholar]
  23. Motahar H, Samani F.S and Molaie M. Nonlinear vibration of the bevel gear with teeth profile modification[J]. Nonlinear Dynamics, 2016, 83(4):1875–1884. http://dx.doi.org/10.1007/s11071-015-2452-z [CrossRef] [Google Scholar]
  24. Garambois P, Perret-Liaudet J and Rigaud E. NVH robust optimization of gear macro and microgeometries using an efficient tooth contact model[J]. Mechanism and Machine Theory, 2017, 117: 78–95. http://dx.doi.org/10.1016/j.mechmachtheory.2017.07.008 [CrossRef] [Google Scholar]
  25. Xinrong Liu, Zhonghou Wang and Kubo Aizoh. Research on Gear Transmission Error Based on Chaotic Ant Swarm Optimization [J]. System Simulation,2019, 31(09): 214–221. http://dx.doi.org/10.16182/j.issn1004731x.joss.17-0398 [Google Scholar]
  26. Wei Han, Zhiqun Ren. Performance optimization of transmission gear based on optimal modification design[J]. Mechanical Strength, 2020, 42(211): 118–124. http://dx.doi.org/10.16579/j.issn.1001.9669.2020.05.018 [Google Scholar]
  27. Chao Jia, Ligang Yao, Jun Fang and Zongde Fang. Calculation of Mesh-in Impact of Modified Involute Helical Gears [J]. Xi'an Jiaotong University, 2020,54(9): 58–65+80. http://dx.doi.org/10.7652/xjtuxb202009006 [Google Scholar]
  28. Zhenzhen Sun, Yuguang Li, Shufen Wang, etc. Research on method of improving the transmission efficiency of reducer based on optimizing gear parameter [J]. Mechanical & Electrical Engineering, 2020, 37(1): 26–31. http://dx.doi.org/10.3969/j.issn.1001-4551.2020.01.005 [Google Scholar]
  29. Feng Wang, Yanlin Zhu, Zongde Fang, etc. Theoretical and experimental investigation on the effect of teeth modification on the meshing stiffness of herringbone gear system [J]. Vibration and Shock, 2018, 37(1): 40–46. http://dx.doi.org/10.13465/j.cnki.jvs.2018.01.007 [Google Scholar]
  30. Feng Wang, Zongde Fang, Shengjin Li, etc. Analysis and experimental study of the effect of tooth face triple repair shape on the vibration characteristics of herringbone gears [J]. vibration engineering, 2016, 29(2): 220–230. http://dx.doi.org/10.13465/j.cnki.jvs.2018.01.007 [Google Scholar]
  31. Hongxin Zhao, Lei He, Jianbing Meng, etc. Topology Modification and Simulation of Herringbone Gear Based on Romax [J]. Coal Mine Machinery,2019, 40(1): 158–161. http://dx.doi.org/10.13436/j.mkjx.201901056 [Google Scholar]
  32. Xijin Zhang, Jinke Jiang, Chao Jia, etc. Topological Modification of a Helical Gear with Circular Tooth Profile in Gear Cutter and Tooth Drum-shaped [J]. Mechanical Transmission, 2018, 42(1): 7–10+16. http://dx.doi.org/10.16578/j.issn.1004.2539.2018.01.002 [Google Scholar]
  33. Ruitao Liu. Dynamic Analysis and Shaping Research of Cylindrical gear Gear Transmission Based on Manufacturing Error [D]. Jiaozuo: Henan University of Technology, 2020. http://dx.doi.org/10.27116/d.cnki.gjzgc.2020.000138 [Google Scholar]
  34. Jing Xiao. Study on Tooth Profile Modification of Involute Gear Pair with a Small Number of Teeth [D]. Tianjin: Tianjin University, 2014. DOI : CNKI:CDMD:2.1016.096363 [Google Scholar]
  35. Lee HW, Park MW, Joo SH, et al. Modeling transmission errors of gear pairs with modified teeth for automotive transmissions[J]. International Journal of Automotive Technology, 2007, 8(2): 225–232. https://api.semanticscholar.org/CorpusID:112611655 [Google Scholar]
  36. Lin TJ and He ZY. Analytical method for coupled transmission error of helical gear system with machining errors, assembly errors and tooth modifications[J]. Mechanical Systems and Signal Processing, 2017, 91: 167–182. http://dx.doi.org/10.1016/j.ymssp.2017.01.005 [CrossRef] [Google Scholar]
  37. Zhang J and Guo F. Statistical modification analysis of helical planetary gears based on response surface method and Monte Carlo simulation[J]. Chinese Journal of Mechanical Engineering, 2015, 28(6): 1194–1203. http://dx.doi.org/10.3901/cjme.2015.0610.079 [CrossRef] [Google Scholar]
  38. Jinzhan Su and Zhaoxia He. Method of Highprecision reshaping for curved bevel gear flanks [J]. South China University of Technology (Natural Science Edition),2014,42(04):91–96+104. http://dx.doi.org/10.3969/j.issn.1000-565X.2014.04.014 [Google Scholar]
  39. Sirafi M, Chang YP and Qatu MS. Robustness of mount systems for idle NVH, Part I : Centre of gravity(CG) mounts[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(4): 317–333. http://dx.doi.org/10.1504/ijvnv.2006.012782 [CrossRef] [Google Scholar]
  40. Wu J, Liu XD, Shan YC, et al. Robustness optimization of engine mounting system based on six sigma and torque roll axis decoupling method[J]. Proceeding of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(4): 1047–1060. http://dx.doi.org/10.1177/0954407018755247 [CrossRef] [Google Scholar]
  41. Jian Bao, Aiguo Cheng, Zhicheng He, etc. Study on Natural Frequency Match in Mounting System UsingInterval Response Method [J]. Noise and Vibration Control, 2011, 31(2): 21–24. http://dx.doi.org/10.3969/j.issn.1006-1355-2011.02.006 [Google Scholar]
  42. Luo Y, Kang Z, et al. Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model[J]. Structural and Multidisciplinary Optimization, 2009, 39(3): 297–310. http://dx.doi.org/10.1007/s00158-008-0329-1 [CrossRef] [Google Scholar]
  43. Zhu W.Q, Hu Y.B, Chen N, et at. A fuzzy and random moment -based arbitrary polynomial chaos method for response analysis of composite structural-acoustic system with multiscale uncertainties[J]. Applied Acoustics, 2021, 177: 1–13 http://dx.doi.org/10.1016/j.apacoust.2021.107913 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.