Open Access
Issue
E3S Web of Conf.
Volume 562, 2024
BuildSim Nordic 2024
Article Number 01001
Number of page(s) 14
Section Daylighting, Fenestration and Lighting
DOI https://doi.org/10.1051/e3sconf/202456201001
Published online 07 August 2024
  1. M. Knoop, O. Stefani, B. Bueno, B. Matusiak, R. Hobday, A. Wirz-Justice, K. Martiny, T. Kantermann, M.P.J. Aarts, N. Zemmouri, S. Appelt, B. Norton, Daylight: What makes the difference? Light. Res. & Tech., 52(3), 423-442 (2019). https://doi.org/10.1177/1477153519869758 [Google Scholar]
  2. M. Scorpio, G. Ciampi, N. Gentile, S. Sibilio, Effectiveness of low-cost non-invasive solutions for daylight and electric lighting integration to improve energy efficiency in historical buildings. Energy and Buildings, 270 (2022). https://doi.org/10.1016/j.enbuild.2022.112281 [CrossRef] [Google Scholar]
  3. N. Gentile, T. Goven, T. Laike, K. Sjoberg. A field study of fluorescent and LED classroom lighting. Light. Res. & Tech., 50(4), 631-650 (2018). https://doi.org/10.1177/1477153516675911 [CrossRef] [Google Scholar]
  4. Illuminating Engineering Society (IES), Standard IES LM-83-12. Approved method: IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE) (IES Standards and Guidelines, Illuminating Engineering Society of North America, 120 Wall Street, New York, New York 10005, 2012). [Google Scholar]
  5. J. Mardaljevic, M. Andersen, N. Roy, J. Christoffersen. Daylighting metrics: is there a relation between useful daylight illuminance and daylight glare probability? In Proceedings of the building simulation and optimization conference BSO12, Loughborough, UK, 10-11 September (2012) [Google Scholar]
  6. A. Nabil, J. Mardaljevic. Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Light. Res. & Tech., 37(1), 41-57, 2016 https://doi.org/10.1191/1365782805li128oa [Google Scholar]
  7. M.-C. Dubois. Impact of shading devices on daylight quality in offices: simulations with radiance. Report No TABK—01/3062, Department of Construction and Architecture, Division of Energy and Building Design. Lund University, Lund Institute of Technology, Lund (2001) [Google Scholar]
  8. S. M. Mousavi, T.H. Khan, L.Y. Wah. Impact of Furniture Layout on Indoor Daylighting Performance in Existing Residential Buildings in Malaysia. J. Dayligh., 5(1), 1-14 (2018). https://doi.org/10.15627/jd.2018.1 [CrossRef] [Google Scholar]
  9. N. Gentile, E.S. Lee, W. Osterhaus, S. Altomonte, C. Naves David Amorim, G. Ciampi, V. Garcia-Hansen, M. Maskarenj, M. Scorpio, S. Sibilio. Evaluation of integrated daylighting and electric lighting design projects: Lessons learned from international case studies. Energy and Buildings, 268, (2022) https://doi.org/10.1016/j.enbuild.2022.112191 [CrossRef] [Google Scholar]
  10. H. Saxena, G. Mahone. Office retrofit daylight potential. Report No. CEC-500-06-039. California Energy Commission, Sacramento California (2010) [Google Scholar]
  11. M. Mohsenin, J. Hu. Assessing daylight performance in atrium buildings by using Climate Based Daylight Modeling. Sol. En., 119, 553-560 (2015) https://doi.org/10.1016/j.solener.2015.05.011 [CrossRef] [Google Scholar]
  12. E. Brembilla, N. Drosou, J. Mardaljevic. Real world complexity in reflectance value measurement for climate-based daylight modelling, in Proceedings of the 3rd IBPSAEngland Conference BSO 2016, Great North Museum, Newcastle, 12-14 September (2016) [Google Scholar]
  13. L.O. Grobe, A. Jakubiec. Impact of model detail on daylighting metrics in residential buildings. J. Phys.: Conf. Ser., 2600(11) (2023). https://doi.org/10.1088/1742-6596/2600/11/112010 [Google Scholar]
  14. O. Bálint Palmgren, D.T. Tran. The Impact of Late Design Choices on Daylight and Energy Use in Buildings. Master Thesis, Department of Construction and Architecture, Division of Energy and Building Design, Publication Number 9054047. Lund University, Lund Institute of Technology, Lund (2021) http://lup.lub.lu.se/studentpapers/record/9054047 [Google Scholar]
  15. A. Bodin, J. Hidemark, M. Stintzing, S. Nyström. Arkitektens handbok (Studentlitteratur, Lund, 2020). [Google Scholar]
  16. E. Neufert, P. Neufert. Architects' data (John Wiley & Sons, New York, 2012). [Google Scholar]
  17. EnergyPlus Weather Data. U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). https://energyplus.net/weather Retrieved 30-11-2023 [Google Scholar]
  18. Boverket. BBR 29 Boverkets byggregler (BBR) – föreskrifter och allmänna råd, (2020) [Google Scholar]
  19. F. Campolongo, J. Cariboni, A. Saltelli. An effective screening design for sensitivity analysis of large models. Env. Mod. & Soft., 22(10), 1509-1518 (2007). https://doi.org/10.1016/j.envsoft.2006.10.004 [CrossRef] [Google Scholar]
  20. M. D. Morris. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics, 33(2), 161-174 (1991). https://doi.org/Doi10.2307/1269043 [Google Scholar]
  21. R. Confalonieri, G. Bellocchi, S. Bregaglio, M. Donatelli, M. Acutis. Comparison of sensitivity analysis techniques: A case study with the rice model WARM. Eco. Mod., 221(16), 1897-1906 (2010). https://doi.org/10.1016/j.ecolmodel.2010.04.021 [CrossRef] [Google Scholar]
  22. Z. Pang, Z. O'Neill, Y. Li, F. Niu. The role of sensitivity analysis in the building performance analysis: A critical review. Energy and Buildings, 209 (2020). https://doi.org/10.1016/j.enbuild.2019.109659 [CrossRef] [Google Scholar]
  23. P. Heiselberg, H. Brohus, A. Hesselholt, H. Rasmussen, E. Seinre, S. Thomas. Application of sensitivity analysis in design of sustainable buildings. Ren. En., 34(9), 2030-2036 (2009). https://doi.org/10.1016/j.renene.2009.02.016 [CrossRef] [Google Scholar]
  24. C. J. Hopfe, J.L.M. Hensen. Uncertainty analysis in building performance simulation for design support. Energy and Buildings, 43(10), 2798-2805 (2011). https://doi.org/10.1016/j.enbuild.2011.06.034 [CrossRef] [Google Scholar]
  25. R. S. McLeod, C.J. Hopfe, A. Kwan. An investigation into future performance and overheating risks in Passivhaus dwellings. Buil. Env., 70, 189-209 (2013). https://doi.org/10.1016/j.buildenv.2013.08.024 [CrossRef] [Google Scholar]
  26. E. Brembilla, C.J. Hopfe, J. Mardaljevic. Influence of input reflectance values on climate-based daylight metrics using sensitivity analysis. J. Buil. Perf. Sim., 11(3), 333-349 (2017). https://doi.org/10.1080/19401493.2017.1364786 [Google Scholar]
  27. J. Herman, W. Usher. SALib: An open-source Python library for Sensitivity Analysis. J. Op. Sour. Soft., 2(9) (2017). https://doi.org/10.21105/joss.00097 [Google Scholar]
  28. P. Rogers, M.-C. Dubois, M. Tillberg, M. Östbring. Moderniserad dagsljusstandard. Report SBUF No. 13209 (2018) https://vpp.sbuf.se/Public/Documents/ProjectDocuments/11feaadb-3861-40c9-9312b911e0647f25/FinalReport/SBUF%2013209%20Slutrapport%20Moderniserad%20dag sljusstandard.pdf [Google Scholar]
  29. N. Forouzandeh, E. Brembilla, L. Nan, J. Stoter, A. Jakubiec. Influence of geometrical levels of detail and inaccurate material optical properties on daylight simulation. Energy and Buildings, 306 (2024). https://doi.org/10.1016/j.enbuild.2024.113924 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.