Open Access
Issue
E3S Web of Conf.
Volume 562, 2024
BuildSim Nordic 2024
Article Number 10004
Number of page(s) 13
Section Digital Twin & Smart Buildings
DOI https://doi.org/10.1051/e3sconf/202456210004
Published online 07 August 2024
  1. “Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance).” Jun. 19, 2018. Accessed: Nov. 26, 2023. [Online]. Available: https://eurlex.europa.eu/eli/dir/2018/844/oj [Google Scholar]
  2. “What is the SRI?,” European Commission. Accessed: Nov. 26, 2023. [Online]. Available: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficientbuildings/smart-readiness-indicator/what-sri_en [Google Scholar]
  3. F. Zhang, A. P. C. Chan, and D. Li, “Developing smart buildings to reduce indoor risks for safety and health of the elderly: A systematic and bibliometric analysis,” Safety Science, vol. 168, p. 106310, Dec. 2023, doi: 10.1016/j.ssci.2023.106310. [CrossRef] [Google Scholar]
  4. “Ageing Europe statistics on population developments.” Accessed: Feb. 17, 2023. [Online]. Available: https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Ageing_Europe_-_statistics_on_population_developments [Google Scholar]
  5. S. Hosseini, P. Hajialigol, M. Aghaei, S. Erba, V. Nik, and A. Moazami, “Improving Climate Resilience and Thermal Comfort in a Complex Building through Enhanced Flexibility of the Energy System,” in 2022 International Conference on Smart Energy Systems and Technologies (SEST), Sep. 2022, pp. 1–6. doi: 10.1109/SEST53650.2022.9898453. [Google Scholar]
  6. V. M. Nik and A. Moazami, “Using collective intelligence to enhance demand flexibility and climate resilience in urban areas,” Applied Energy, vol. 281, 2021, doi: 10.1016/j.apenergy.2020.116106. [Google Scholar]
  7. V. M. Nik and M. Hosseini, “CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation,” Applied Energy, vol. 350, p. 121785, Nov. 2023, doi: 10.1016/j.apenergy.2023.121785. [CrossRef] [Google Scholar]
  8. M. C. Schut, “On model design for simulation of collective intelligence,” Information Sciences, vol. 180, no. 1, pp. 132–155, 2010, doi: 10.1016/j.ins.2009.08.006. [CrossRef] [Google Scholar]
  9. Nord Pool Spot, “Trading Appendix 1: Definitions.” 2014. [Online]. Available: https://www.nordpoolgroup.com/49f080/globalassets/archive/trading-appendix-1--definitions.pdf [Google Scholar]
  10. “Increasing proportion of people live in urban areas,” Statistiska Centralbyrån. Accessed: Nov. 28, 2023. [Online]. Available: https://www.scb.se/en/findingstatistics/statistics-by-subject-area/environment/land-use/localities-and-urbanareas/pong/statistical-news/localities-and-urban-areas-2020/ [Google Scholar]
  11. SCB, “Official statistics of Sweden – Annual Report 2018.” SCB, Statistiska centralbyrån Statistics Sweden, 2019. Accessed: Nov. 26, 2021. [Online]. Available: https://www.scb.se/globalassets/sam-forum/officiell-statistik/sos-rapporter/officialstatistics-annual-report-2018.pdf [Google Scholar]
  12. “Nearly 5.2 million dwellings in Sweden,” Statistiska Centralbyrån. Accessed: Nov. 28, 2023. [Online]. Available: https://www.scb.se/en/finding-statistics/statistics-bysubject-area/housing-construction-and-building/housing-construction-andconversion/dwelling-stock/pong/statistical-news/dwelling-stock-2022-12-31/ [Google Scholar]
  13. P. Bacher, P. A. de Saint-Aubain, L. E. Christiansen, and H. Madsen, “Non-parametric method for separating domestic hot water heating spikes and space heating,” Energy and Buildings, vol. 130, pp. 107–112, Oct. 2016, doi: 10.1016/j.enbuild.2016.08.037. [CrossRef] [Google Scholar]
  14. ASHRAE, “ASHRAE Guideline 14-2014 Measurement of Energy, Demand and Water Savings.” American Society of Heating, Ventilating, and Air Conditioning Engineers, Atlanta, Georgia, 2014. [Online]. Available: www.ashrae.org [Google Scholar]
  15. M. Hosseini, K. Javanroodi, and V. M. Nik, “High-resolution impact assessment of climate change on building energy performance considering extreme weather events and microclimate – Investigating variations in indoor thermal comfort and degreedays,” Sustainable Cities and Society, vol. 78, p. 103634, Mar. 2022, doi: 10.1016/j.scs.2021.103634. [CrossRef] [Google Scholar]
  16. V. M. Nik, “Making energy simulation easier for future climate Synthesizing typical and extreme weather data sets out of regional climate models (RCMs),” Applied Energy, vol. 177, pp. 204–226, 2016, doi: 10.1016/j.apenergy.2016.05.107. [CrossRef] [Google Scholar]
  17. V. Nik, “Climate Simulation Of An Attic Using Future Weather Data Sets Statistical Methods For Data Processing And Analysis,” 2010. [Google Scholar]
  18. H. Li, “Chapter 8 Thermal Performance of Various Pavement Materials,” in Pavement Materials for Heat Island Mitigation, H. Li, Ed., Boston: ButterworthHeinemann, 2016, pp. 155–197. doi: 10.1016/B978-0-12-803476-7.00008-8. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.