Open Access
Issue
E3S Web of Conf.
Volume 562, 2024
BuildSim Nordic 2024
Article Number 11001
Number of page(s) 13
Section Validation, Calibration and Uncertainty
DOI https://doi.org/10.1051/e3sconf/202456211001
Published online 07 August 2024
  1. A. Chong, Y. Gu, H. Jia, Calibrating building energy simulation models: A review of the basics to guide future work, Energy and Buildings 253, 111533 (2021). https://doi.org/10.1016/j.enbuild.2021.111533 [CrossRef] [Google Scholar]
  2. J. Cipriano, G. Mor, D. Chemisana, D. Pérez, G. Gamboa, X. Cipriano, Evaluation of a multi-stage guided search approach for the calibration of building energy simulation models, Energy and Buildings 87, 370-385 (2015). https://doi.org/10.1016/j.enbuild.2014.08.052 [CrossRef] [Google Scholar]
  3. D. Yan, W. O’Brien, T. Hong, X. Feng, H.B. Gunay, F. Tahmasebi, A. Mahdavi, Occupant behavior modeling for building performance simulation: Current state and future challenges, Energy and Buildings 107, 264-278 (2015) [CrossRef] [Google Scholar]
  4. A. Chong, K. Menberg, Guidelines for the Bayesian calibration of building energy models, Energy and Buildings 174, 527-547 (2018) [CrossRef] [Google Scholar]
  5. A. Chong, G. Augenbroe, D. Yan, Occupancy data at different spatial resolutions: Building energy performance and model calibration, Applied Energy 286, 116492 (2021) [CrossRef] [Google Scholar]
  6. Y.-S. Kim, M. Heidarinejad, M. Dahlhausen, J. Srebric, Building energy model calibration with schedules derived from electricity use data, Applied Energy 190, 997-1007 (2017) [CrossRef] [Google Scholar]
  7. D.H. Yi, D.W. Kim, C.S. Park, Parameter identifiability in Bayesian inference for building energy models, Energy and Buildings 198, 318-328 (2019) [CrossRef] [Google Scholar]
  8. T. Yang, Y. Pan, J. Mao, Y. Wang, Z. Huang, An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study, Applied Energy 179, 1220-1231 (2016) [CrossRef] [Google Scholar]
  9. A. Figueiredo, J. Kämpf, R. Vicente, R. Oliveira, T. Silva, Comparison between monitored and simulated data using evolutionary algorithms: Reducing the performance gap in dynamic building simulation, Journal of Building Engineering 17, 96-106 (2018) [CrossRef] [Google Scholar]
  10. S. Martínez, E. Pérez, P. Eguía, A. Erkoreka, E. Granada, Model calibration and exergoeconomic optimization with NSGA-II applied to a residential cogeneration, Applied Thermal Engineering 169, 114916 (2020) [CrossRef] [Google Scholar]
  11. S. Moinard, G. Guyon, Empirical validation of EDF ETNA and GENEC test-cell models, Subtask A 3, 912 (1999) [Google Scholar]
  12. J. Travesi, G. Maxwell, C. Klaassen, M. Holtz, G. Knabe, C. Felsmann, M. Achermann, M. Behne, Empirical validation of Iowa energy resource station building energy analysis simulation models, IEA Task 22 (2001) [Google Scholar]
  13. P. Loutzenhiser, H. Manz, IEA Task 34—Testing of Building Energy Simulation Tools Project, International energy agency: Paris, France (2014) [Google Scholar]
  14. H. Eggebø, Sensitivity analysis for investigating the energy performance of a retrofitted kindergarten under different weather scenarios, NTNU, 2017. [Google Scholar]
  15. T. Xue, V. Nadas, J. Jokisalo, R. Kosonen, M. Vuolle, M. Virtanen, Optimal dimensioning power of GSHP with district heating in an educational building, CLIMA 2022 conference (2022). https://doi.org/10.34641/clima.2022.115 [Google Scholar]
  16. O. Todorov, K. Alanne, M. Virtanen, R. Kosonen, A novel data management methodology and case study for monitoring and performance analysis of largescale ground source heat pump (GSHP) and borehole thermal energy storage (BTES) system, Energies 14, 1523 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.