Open Access
Issue |
E3S Web of Conf.
Volume 562, 2024
BuildSim Nordic 2024
|
|
---|---|---|
Article Number | 11003 | |
Number of page(s) | 11 | |
Section | Validation, Calibration and Uncertainty | |
DOI | https://doi.org/10.1051/e3sconf/202456211003 | |
Published online | 07 August 2024 |
- E.G. Deal, The european green deal, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels (2020). [Google Scholar]
- R. Puertas, L. Marti, Renewable energy production capacity and consumption in europe, Science of the Total Environment 853, 158592 (2022). 10.1016/j.scitotenv.2022.158592 [CrossRef] [Google Scholar]
- A.C. Marques, J.A. Fuinhas, D.A. Pereira, Have fossil fuels been substituted by renewables? an empirical assessment for 10 european countries, Energy policy 116, 257 (2018). 10.1016/j.enpol.2018.02.021 [CrossRef] [Google Scholar]
- C. Bergaentzlé, C. Clastres, H. Khalfallah, Demand-side management and european environmental and energy goals: An optimal complementary approach, Energy Policy 67, 858 (2014). 10.1016/j.enpol.2013.12.008 [CrossRef] [Google Scholar]
- E. Commission, Energy performance of buildings directive (2023), accessed: 2023-12-11, https://energy.ec.europa.eu/ topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en#documents [Google Scholar]
- SSB, Production and consumption of energy, energy balance and energy account (2022), accessed: 2023-11-05, https://www.ssb.no/en/energi-og-industri/energi/statistikk/ produksjon-og-forbruk-av-energi-energibalanse-og-energiregnskap [Google Scholar]
- IEA, Norway 2022: Energy Policy Review. (IEA Publications, 2022) [Google Scholar]
- H. Madsen, J. Holst, Estimation of continuous-time models for the heat dynamics of a building, Energy and buildings 22, 67 (1995). 10.1016/0378-7788(94)00904-X [CrossRef] [Google Scholar]
- P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy and buildings 43, 1511 (2011). 10.1016/j.enbuild.2011.02.005 [CrossRef] [Google Scholar]
- J.P. Real, C. Rasmussen, R. Li, K. Leerbeck, O.M. Jensen, K.B. Wittchen, H. Madsen, Characterisation of thermal energy dynamics of residential buildings with scarce data, Energy and Buildings 230, 110530 (2021). 10.1016/j.enbuild.2020.110530 [CrossRef] [Google Scholar]
- M. Askeland, L. Georges, M. Korpås, Low-parameter linear model to activate the flexibility of the building thermal mass in energy system optimization, Smart Energy 9, 100094 (2023). 10.1016/j.segy.2023.100094 [CrossRef] [Google Scholar]
- H. Madsen, P. Bacher, G. Bauwens, A.H. Deconinck, G. Reynders, S. Roels, E. Himpe, G. Lethé, Thermal performance characterization using time series data-iea ebc annex 58 guidelines (2015). [Google Scholar]
- B. Merema, D. Saelens, H. Breesch, Demonstration of an mpc framework for all-air systems in non-residential buildings, Building and environment 217, 109053 (2022). 10.1016/j.buildenv.2022.109053 [Google Scholar]
- C.A. Thilker, P. Bacher, D. Cali, H. Madsen, Identification of non-linear autoregressive models with exogenous inputs for room air temperature modelling, Energy and AI 9, 100165 (2022). 10.1016/j.egyai.2022.100165 [CrossRef] [Google Scholar]
- D.N. Papadopoulos, F.D. Javan, B. Najafi, A.H. Mamaghani, F. Rinaldi, Handling complete short-term data logging failure in smart buildings: Machine learning based forecasting pipelines with sliding-window training scheme, Energy and Buildings 301, 113694 (2023). 10.1016/j.enbuild.2023.113694 [CrossRef] [Google Scholar]
- I.A. Campodonico Avendano, F.D. Javan, B. Najafi, A. Moazami, F. Rinaldi, Assessing the impact of employing machine learning-based baseline load prediction pipelines with sliding-window training scheme on offered flexibility estimation for different building categories, Energy and Buildings 294, 113217 (2023). 10.1016/j.enbuild.2023.113217 [CrossRef] [Google Scholar]
- F. Dadras Javan, I.A. Campodonico Avendano, B. Najafi, A. Moazami, F. Rinaldi, Machine-learning-based prediction of hvac-driven load flexibility in warehouses, Energies 16, 5407 (2023). 10.3390/en16145407 [CrossRef] [Google Scholar]
- F. Bünning, B. Huber, A. Schalbetter, A. Aboudonia, M.H. de Badyn, P. Heer, R.S. Smith, J. Lygeros, Physics-informed linear regression is competitive with two machine learning methods in residential building mpc, Applied Energy 310, 118491 (2022). [CrossRef] [Google Scholar]
- A. Erfani, T. Jafarinejad, S. Roels, D. Saelens, In search of optimal building behavior models for model predictive control in the context of flexibility, Building Simulation 17, 71 (2024). 10.1007/s12273-023-1079-0 [Google Scholar]
- C.A. Thilker, P. Bacher, H.G. Bergsteinsson, R.G. Junker, D. Cali, H. Madsen, Nonlinear grey-box modelling for heat dynamics of buildings, Energy and Buildings 252, 111457 (2021). 10.1016/j.enbuild.2021.111457 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.