Open Access
Issue
E3S Web Conf.
Volume 563, 2024
International Conference on Environmental Science, Technology and Engineering (ICESTE 2024)
Article Number 01003
Number of page(s) 6
Section Energy Science
DOI https://doi.org/10.1051/e3sconf/202456301003
Published online 30 August 2024
  1. P. Nejat, F. Jomehzadeh, M.M. Taheri, M. Gohari, M.Z. Abd, A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 (2015) [CrossRef] [Google Scholar]
  2. 2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector. Global Alliance for Buildings and Construction, International Energy Agency and the United Nations, Environment Programme (2019) [Google Scholar]
  3. N. Azimi Fereidani, E. Rodrigues, A.R. Gaspar, A review of the energy implications of passive building design and active measures under climate change in the Middle East. J. Clean. Prod. 305 (2021) [Google Scholar]
  4. H. Wang, W. Lu, Z. Wu, G. Zhang, Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai. Renew. Energy 145, 52–64 (2020) [CrossRef] [Google Scholar]
  5. R.A. Kishore, M.V.A. Bianchi, C. Booten, J. Vidal, R. Jackson, Optimizing, P.C.M.-integrated walls for potential energy savings in US buildings. Energy Build. 226 (2020) [Google Scholar]
  6. K. Saafi, N. Daouas, Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate. Energy 187 (2019) [Google Scholar]
  7. R. Ye, R. Huang, X. Fang, Z. Zhang, Simulative optimization on energy saving performance of phase change panels with different phase transition temperatures. Sustain. Cities Soc. 52 (2020) [Google Scholar]
  8. B.Y. Yun, J.H. Park, S. Yang, S. Wi, S. Kim, Integrated analysis of the energy and economic efficiency of PCM as an indoor decoration element: application to an apartment building. Sol. Energy 196, 437–447 (2020) [CrossRef] [Google Scholar]
  9. M.D.L.A. Ortega Del Rosario, M. Chen Austin, D. Bruneau, J.P. Nadeau, P. Sebastian, D. Jaupard, Operation assessment of an air-PCM unit for summer thermal comfort in a naturally ventilated building. Architect. Sci. Rev. 64(1-2), 37–46 (2021) [CrossRef] [Google Scholar]
  10. M. Alizadeh, S.M. Sadrameli, Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: experimental design and response surface approach. Energy Build. 188, 297–313 (2019) [CrossRef] [Google Scholar]
  11. N. Kerroumi, B. Touati, J. Virgone, Thermal performance analysis of sensible and PCM-integrated thermal insulation layers to improve thermal comfort in building, Interfacial Phenom. Heat Transf. 8(1), 67–80 (2020) [Google Scholar]
  12. K. Du, J. Calautit, Z. Wang, Y. Wu, H. Liu, A Review of the Applications of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges. Appl. Energ. 220, 242–273 (2018) [CrossRef] [Google Scholar]
  13. G. Zhang, G. Cui, B. Dou, Z. Wang, M.A. Goula, An Experimental Investigation of Forced Convection Heat Transfer with Novel Microencapsulated Phase Change Material Slurries in a Circular Tube under Constant Heat Flux. Energ. Convers. Manage 171, 699–709 (2018) [CrossRef] [Google Scholar]
  14. S. Koohi-Fayegh, M.A. Rosen, A Review of Energy Storage Types, Applications and Recent Developments. J. Energ. Storage 27 (2020) [Google Scholar]
  15. A. Crespo, C. Barreneche, M. Ibarra, W. Platzer, Latent thermal Energy Storage for Solar Process Heat Applications at Medium-High Temperatures-A Review. Solar Ener. 192, 3–34 (2019) [CrossRef] [Google Scholar]
  16. W. Lu, G. Liu, Z. Xiong, Z. Wu, G. Zhang, An Experimental Investigation of Composite Phase Change Materials of Ternary Nitrate and Expanded Graphite for Medium-Temperature thermal Energy Storage. Solar Energy 195, 573–580 (2020) [CrossRef] [Google Scholar]
  17. Y. Xu, M.J. Li, Z.J. Zheng, X.D. Xue, Melting Performance Enhancement of Phase Change Material by a Limited Amount of Metal Foam: Configurational Optimization and Economic Assessment. Appl. Energ. 212, 868–880 (2018) [CrossRef] [Google Scholar]
  18. I. Violidakis, M. Zeneli, K. Atsonios, G. Strotos, N. Nikolopoulos, S. Karellas, Dynamic Modelling of an Ultra High Temperature, P.C.M. with Combined Heat and Electricity Production for Application at Residential Buildings. Energ. Build. 222 (2020) [Google Scholar]
  19. H. Wei, X. Xie, X. Li, X. Lin, Preparation and Characterization of Capric-Myristic-Stearic Acid Eutectic Mixture/modified Expanded Vermiculite Composite as a Form-Stable Phase Change Material. Appl. Energ. 178, 616–623 (2016) [CrossRef] [Google Scholar]
  20. M.M. Kenisarin, Thermophysical Properties of Some Organic Phase Change Materials for Latent Heat Storage. A Review. Sol. Ene. 107, 553–575 (2014) [CrossRef] [Google Scholar]
  21. Z. Liu, S. Zhang, D. Hu, Y. Zhang, H. Lv, C. Liu, Paraffin/red Mud Phase Change Energy Storage Composite Incorporated gypsum-based and Cement-Based Materials: Microstructures, thermal and Mechanical Properties. J. Hazard. Mater. 364, 608–620 (2019) [CrossRef] [Google Scholar]
  22. Y. Qu, S. Wang, D. Zhou, Y. Tian, Experimental Study on thermal Conductivity of Paraffin-Based Shape-Stabilized Phase Change Material with Hybrid Carbon Nano-Additives. Renew. Energ. 146, 2637–2645 (2020) [CrossRef] [Google Scholar]
  23. S. Duan, H. Li, Z. Zhao, L. Wang, Investigation on Heating Performance of an Integrated Phase Change Material Trombe wall Based on State Space Method. J. Energ. Storage 38 (2021) [Google Scholar]
  24. D. Uerge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, K. Petrichenko. Heating and Cooling Energy Trends and Drivers in Buildings. Renew. Sustain. Energ. Rev. 41, 85–98 (2015) [CrossRef] [Google Scholar]
  25. B. Mohandes, S. Acharya, M.S.E. Moursi, A.S. Al-Sumaiti, H. Doukas, S. Sgouridis, Optimal Design of an Islanded Microgrid with Load Shifting Mechanism between Electrical and Thermal Energy Storage Systems. IEEE Trans. Power Syst. 35(4), 2642–2657 (2020) [CrossRef] [Google Scholar]
  26. J. Xie, W. Wang, P. Sang, J. Liu, Experimental and Numerical Study of thermal Performance of the PCM wall with Solar Radiation. Construction Building Mater. 177, 443–456 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.