Open Access
Issue |
E3S Web Conf.
Volume 563, 2024
International Conference on Environmental Science, Technology and Engineering (ICESTE 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 9 | |
Section | Energy Science | |
DOI | https://doi.org/10.1051/e3sconf/202456301006 | |
Published online | 30 August 2024 |
- I. Munteanu, A.I. Bratcu, N.A. Cutululis, E. Ceang, Optimal Control of Wind Energy Systems towards a Global Approach. Springer-Verlag, Berlin, Germany (2008) [Google Scholar]
- A.A.B. Mohd Zin, H.A. Mahmoud Pesaran, A. Khairuddin, L. Jahanshaloo, O. Shariati, An overview on doubly fed induction generators controls and contributions to wind based electricity generation. Renew. Sustain. Energy Rev. 27, 692–708 (2013) [CrossRef] [Google Scholar]
- S.S. Murthy, B. Singh, P.K. Goel, S.K. Tiwari, A comparative study of fixed speed and variable speed wind energy conversion systems feeding the grid. In Proc. IEEE Conf. Power Electron. Drive Syst. (PEDS 07) 736–743 (2007) [Google Scholar]
- H. Polinder, F.F.A. Van Der Pijl, G.J. De Vilder, P.J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines, IEEE Trans. Energy Convers. 21(3), 725–733 (2006) [CrossRef] [Google Scholar]
- E. Muljadi, C.P. Butterfield, B. Parsons, A. Ellis, Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans. Energy Convers. 22(1), 29–36 (2007) [CrossRef] [Google Scholar]
- W. Qiao, R.G. Harley, Grid connection requirements and solutions for DFIG wind turbines, In Proc. IEEE Energy 2030 Conf. (ENERGY ‘08) 1–8 (2008) [Google Scholar]
- A. Petersson, T. Thiringer, L. Harnefors, T. Petru, Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans. Energy Convers., 20(4), 878–886 (2005) [CrossRef] [Google Scholar]
- H.M. Hasanien, A set-membership affine projection algorithm-based adaptive-controlled SMES units for wind farms output power smoothing. IEEE Trans. Sustain. Energy 5(4), 1226–1233 (2014) [CrossRef] [Google Scholar]
- A.S. Satpathy, N. Kishore, D. Kastha, N. Sahoo, Control scheme for a stand-alone wind energy conversion system. IEEE Trans. Energy Convers. 29(2), 418–425 (2014) [CrossRef] [Google Scholar]
- R.M. Hilloowala, A.M. Sharaf, A rule-based fuzzy logic controller for a pwm inverter in a standalone wind energy conversion scheme. In Proc. IEEE Ind. Appl. Soc. Annu. Meeting Conf. Rec. 2066–2073 (1993) [CrossRef] [Google Scholar]
- S. Sharma, J.P. Mishra, S. Datta, Sliding mode power control of a DFIG based variable speed wind energy conversion system. Proceedings of the Annual IEEE India Conference (INDICON) 1–6 (2015) [Google Scholar]
- M. Mohseni, S.M. Islam, Transient control of DFIG-based wind power plants in compliance with the australian grid code. IEEE Trans. Power Electron. 27(6), 2813–2824, (2012) [CrossRef] [Google Scholar]
- A.M. Kassem, K.M. Hasaneen, A.M. Yousef, Dynamic modeling and robust power control of DFIG driven by wind turbine at infinite grid. Int. J. Electr. Power Energy Syst. 44(1), 375–382 (2013) [CrossRef] [Google Scholar]
- J. Tian, C. Su, Z. Chen, Reactive power capability of the wind turbine with Doubly Fed Induction Generator. IEEE Industrial Electronics Society (IECON ’13) 5312–5317, (2013) [Google Scholar]
- K. Ma, M. Liserre, F. Blaabjerg, T. Kerekes, Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter. IEEE Trans. Power Electron. 30(2), 590–602 (2015) [CrossRef] [Google Scholar]
- G.O. Suvire, P.E. Mercado, Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications. IET Gener. Transmiss. Distrib. 6(6), 483–492 (2012) [CrossRef] [Google Scholar]
- D. Somayajula, M.L. Crow, An ultra capacitor integrated power conditioner for intermittency smoothing and improving power quality of distribution grid. IEEE Trans. Sustain. Energy 5(4), 1145–1155 (2014) [CrossRef] [Google Scholar]
- M.T. Abolhassani, P. Enjeti, H. Toliyat, Integrated doubly fed electric alternator/active filter (IDEA), a viable power quality solution, for wind energy conversion systems. IEEE Trans. Energy Convers. 23(2), 642–650 (2008) [CrossRef] [Google Scholar]
- E. Hernandez, M. Madriga, A step in the right direction in the demonstrating of the doubly-taken care of enlistment machine for consonant examination. IEEE Trans. Energy Convers. 29(1), 149–157 (2014) [CrossRef] [Google Scholar]
- J.J. Rico, M. Madrigal, E. Acha, Dynamic consonant advancement utilizing the lengthy symphonious area. IEEE Trans. Power Deliv. 18(2), 587–594 (2003) [CrossRef] [Google Scholar]
- H. Garcia, M. Madrigal, Friend consonant circuit models for transient examinations. Electr. Eng. 95, 43–51 (2013) [CrossRef] [Google Scholar]
- H.W. Dommel, S. Bhattacharya, V. Brandwajn, H.K. Lauw, Electromagnetic Homeless people Program Instructional pamphlet: EMTP Hypothesis Book. Bonneville Power Organization, Portland, OR, USA (1986) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.