Open Access
Issue
E3S Web Conf.
Volume 563, 2024
International Conference on Environmental Science, Technology and Engineering (ICESTE 2024)
Article Number 02016
Number of page(s) 10
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202456302016
Published online 30 August 2024
  1. L.B. Jayasinghe, D.P. Thambiratnam, N. Perera, J.H.A.R. Jayasooriya, Computer simulation of underground blast response of pile in saturated soil. Comput. Struct. 120, 86–95 (2013) [CrossRef] [Google Scholar]
  2. R. Kumar, D. Choudhury, K. Bhargava, Response of shallow foundation in rocks subjected to underground blast loading using FLAC3D. Disaster Adv. 7 (2), 64–71 (2014) [Google Scholar]
  3. T. Chakraborty, Analysis of hollow steel piles subjected to buried blast loading. Comput. Geotech. 78, 194–202 (2016) [CrossRef] [Google Scholar]
  4. A. De, A. Niemiec, T.F. Zimmie, Physical and numerical modeling to study effects of an underwater explosion on a buried tunnel. J. Geotech. Geoenviron. Eng. 143(5), 04017002 (2017) [CrossRef] [Google Scholar]
  5. L.B. Jayasinghe, H.Y. Zhou, A.T.C. Goh, Z.Y. Zhao, Y.L. Gui, Pile response subjected to rock blasting induced ground vibration near soil-rock interface. Comput. Geotech. 82, 1–15 (2017) [CrossRef] [Google Scholar]
  6. R. Tiwari, T. Chakraborty, V. Matsagar, Dynamic analysis of tunnel in soil subjected to internal blast loading. Geotech. Geol. Eng. 35(4), 1491–1512 (2017) [CrossRef] [Google Scholar]
  7. N. Jiang, T. Gao, C. Zhou, X. Luo, Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel. Tunnelling Underground Space Technol. 81, 590–601 (2018) [CrossRef] [Google Scholar]
  8. R. Tiwari, T. Chakraborty, V. Matsagar, Analysis of curved tunnels in soil subjected to internal blast loading. Acta Geotech. 15(2), 509–528 (2020) [CrossRef] [Google Scholar]
  9. J. Zhang, H. Zhang, L. Zhang, Z. Liang, Buckling response analysis of buried steel pipe under multiple explosive loadings. J. Pipeline Syst. Eng. Pract. 11(2), 04020010 (2020) [CrossRef] [Google Scholar]
  10. S.M. Anas, M. Alam, M. Umair, Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: A review. International Journal of Protective Structures 13(1), 99–139 (2021) [Google Scholar]
  11. S.M. Anas, M. Alam, Comparison of Existing Empirical Equations for Blast Peak Positive Overpressure from Spherical Free Air and Hemispherical Surface Bursts. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Springer 46, 965–984 (2021) [Google Scholar]
  12. S.M. Anas, M. Alam, M. Umair, Experimental and Numerical Investigations on Performance of Reinforced Concrete Slabs under Explosive-induced Air-blast loading: A state-of-the-art review Structures. Elsevier 31, 428–461 (2021) [Google Scholar]
  13. S.M. Anas, M. Alam, M. Umair, Performance of on-ground double-roof RCC shelter with energy absorption layers under close-in air-blast loading. Asian Journal of Civil Engineering, Springer 22 1525–1549 (2021) [CrossRef] [Google Scholar]
  14. S.M. Anas, M. Shariq, M. Alam, M. Umair, Evaluation of Critical Damage Location of Contact Blast on Conventionally Reinforced One-way Square Concrete Slab applying CEL-FEM Blast Modeling Technique. International Journal of Protective Structures 13(4), 672–715 (2022) [CrossRef] [Google Scholar]
  15. S.M. Anas, M. Alam, M. Shariq, Damage Response of Conventionally Reinforced Two-way Spanning Concrete Slab under Eccentric Impacting Drop Weight Loading. Defence Technology, Elsevier 19, 12–34 (2023) [CrossRef] [Google Scholar]
  16. N. Jiang, B. Zhu, C. Zhou, H. Li, B. Wu, Y. Yao, T. Wu, Blasting vibration effect on the buried pipeline: A brief overview. Engineering Failure Analysis 129 (2021) [Google Scholar]
  17. C. Vipulanandan, R. Ortega, Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy, Reston, VA ASCE, New York (2005) [Google Scholar]
  18. A. De, T.F. Zimmie, Modeling of surface blast effects on underground structures ASTM International. Geotech. Test. J. 30(5), 427–431 (2007) [CrossRef] [Google Scholar]
  19. J.H. Yin, Comparative modeling study of reinforced beam on elastic foundation. J. Geotech. Geoenviron. Eng. 126(3), 265–271 (2000) [CrossRef] [Google Scholar]
  20. C.H. Chaudhuri, D. Choudhury, Effect of earthquake induced transverse permanent ground deformation on buried continuous pipeline using winkler approach, In Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics, Geotechnical Special Publication 318, Reston (2020) [Google Scholar]
  21. C.H. Chaudhuri, D. Choudhury, Buried pipeline subjected to seismic landslide: A simplified analytical solution. Soil Dyn. Earthquake Eng. 134, 106155 (2020) [CrossRef] [Google Scholar]
  22. L. Sun, A closed-form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads. J. Sound Vib. 242(4), 619–627 (2001) [CrossRef] [Google Scholar]
  23. L. Sun, A closed-form solution of beam on viscoelastic subgrade subjected to moving loads. Comput. Struct. 80(1), 1–8 (2002) [CrossRef] [Google Scholar]
  24. L. Sun, An explicit representation of steady state response of a beam on an elastic foundation to moving harmonic line loads. Int. J. Numer. Anal. Methods Geomech. 27(1), 69–84 (2003) [CrossRef] [Google Scholar]
  25. D. Nourzadeh, S. Takada, K. Bargi, Response of buried pipelines to underground blast loading. In Proc., 5th Civil Engineering Conf., in the Asian Region and Australasian Structural Engineering Conf., 233. Barton, ACT, Australia (2010) [Google Scholar]
  26. A.S. Abedi, N. Hataf, A. Ghahramani, Analytical solution of the dynamic response of buried pipelines under blast wave. Int. J. Rock Mech. Min. Sci. 88, 301–306 (2016) [CrossRef] [Google Scholar]
  27. A.S. Abedi, N. Hataf, Analytical solution of the dynamic response of piles under blast waves. Iran. J. Sci. Technol. Trans. Civ. Eng. 43(4), 727–734 (2019) [CrossRef] [Google Scholar]
  28. G.I. Kerley, The Linear US-UP Relation in Shock-Wave Physics. A Kerley Technical Services Research Report 1–21 (2006) [Google Scholar]
  29. Abaqus, User Manual Dassault Systems Simulia Corporation, Commercial Software Package, USA (2020) [Google Scholar]
  30. M. Mokhtari, A.V. Nia, The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dynamics and Earthquake Engineering 87, 52–62 (2016) [CrossRef] [Google Scholar]
  31. A.J. Olarewaju, R.N.S.V. Kameswara, M.A. Mannan, Response of Underground Pipes to Blast Loads. Earthquake-Resistant Structures - Design, Assessment and Rehabilitation 507–524 (2012) [Google Scholar]
  32. M. Mohitpour, H. Golshan, A. Murray, Pipeline design and construction: a practical approach third edition, ASME Press, New York (2007) [CrossRef] [Google Scholar]
  33. UFC 3-340-02 Structures to resist the effects of accidental explosions. Unified Facilities Criteria UFC 3-340-02, U.S. Army Corporations of Engineers (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.