Open Access
Issue
E3S Web Conf.
Volume 563, 2024
International Conference on Environmental Science, Technology and Engineering (ICESTE 2024)
Article Number 03080
Number of page(s) 7
Section Green Environment
DOI https://doi.org/10.1051/e3sconf/202456303080
Published online 30 August 2024
  1. A. Chauhan, F. Islam, A. Imran, A. Ikram, T. Zahoor, S. Khurshid, M.A. Shah, A review on waste valorization, biotechnological utilization, and management of potato, Food Science & Nutrition 11(10), 5773-5785 (2023) [CrossRef] [PubMed] [Google Scholar]
  2. S. Khanal, K. Karimi, S. Majumdar, V. Kumar, R. Verma, S.K. Bhatia, K. Kuca, J. Esteban, D. Kumar, Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectives, Biomass Conversion and Biorefinery (2023) [Google Scholar]
  3. D. Jimenez-Champi, F.L. Romero-Orejon, A. Moran-Reyes, A.M. Muñoz, F. Ramos-Escudero, Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review, CyTA-Journal of Food 21(1), 418-432 (2023) [CrossRef] [Google Scholar]
  4. N. Ijaz, S. Bashir, A. Ikram, A. Zafar, H.B. Ul Ain, S. Ambreen, M. Ahmad, R.S. Almalki, M.Z. Khalid, W. Khalid, F.K. Madilo, Valorization of potato peel: a sustainable eco-friendly approach, CyTA-Journal of Food 22(1), 2306951 (2024) [CrossRef] [Google Scholar]
  5. W. Hidayat, I. Sufiawati, M.H. Satari, R. Lesmana, S. Ichwan, Pharmacological activity of chemical compounds of potato peel waste (Solanum tuberosum L.) in vitro: a scoping review, Journal of Experimental Pharmacology 16, 61-69 (2024) [CrossRef] [Google Scholar]
  6. M.K. Alam, A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): revisiting the associated health benefits, Trends in Food Science & Technology 115, 512-529 (2021) [CrossRef] [Google Scholar]
  7. P. Vithu, S.K. Dash, K. Rayaguru, Post-harvest processing and utilization of sweet potato: a review, Food Reviews International 35(8), 726-762 (2019) [CrossRef] [Google Scholar]
  8. D. Tedesco, B.R. de Almeida Moreira, M.R. Barbosa Júnior, M. Maeda, R.P. da Silva, Sustainable management of sweet potatoes: a review on practices, strategies, and opportunities in nutrition-sensitive agriculture, energy security, and quality of life, Agricultural Systems 210, 103693 (2023) [CrossRef] [Google Scholar]
  9. S. Chinmai, Dr.N. Kaur, Review on extraction and micro-encapsulation of beta carotene from sweet potato peel, The Pharma Innovation Journal 12(10), 56-66 (2023) [Google Scholar]
  10. J.A. Castañón Vilca, B.S. Ortiz-Quispe, C.R. Apaza-Cusiatau, E. Medrano de Jara, M.J. Quequezana-Bedregal, E.E. Gutierrez-Oppe, P.d.A. Pessôa Filho, Evaluation of the barrier and antimicrobial properties of biodegradable films based on potato waste starch containing natural additives, SN Applied Sciences 5, 370 (2023) [CrossRef] [Google Scholar]
  11. J.E. Deocampo Jr., J.T. Fenol, A.G.M. Jimenez, G.S. Paguntalan, C.M.A. Caipang, Production of ornamental fish in a biofloc-based system using sweetpotato (Ipomoea batatas) waste as carbon source, IOP Conference Series: Earth and Environmental Science 1118, 012017 (2022) [CrossRef] [Google Scholar]
  12. P.N. Diagboya, A. Odagwe, H.H. Oyem, C. Omoruyi, E. Osabohien, Adsorptive decolorization of dyes in aqueous solution using magnetic sweet potato (Ipomoea batatas L.) peel waste, RSC Sustainability 2, 686-694 (2024) [CrossRef] [Google Scholar]
  13. M.I. Din, M. Ahmed, M. Ahmad, M. Iqbal, Z. Ahmad, Z. Hussain, R. Khalid, A. Samad, Investigating the activity of carbon fiber electrode for electricity generation from waste potatoes in a single-chambered microbial fuel cell, Journal of Chemistry 2023, 8520657 (2023) [Google Scholar]
  14. K. Dulta, J. Aman, M. Kamran, A. Trehan, K. Sharma, S. Kulwanshi, S. Kumari, P.K. Chauhan, ZnO nanoparticles synthesis using potato peel waste and their antifungal activity, Malaysian Journal of Chemistry 25(4), 176-183 (2023) [Google Scholar]
  15. G. Grillo, S. Tabasso, G. Capaldi, K. Radosevic, I. Radojčić-Redovniković, V. Gunjević, E. Calcio Gaudino, G. Cravotto, Food-waste valorisation: synergistic effects of enabling technologies and eutectic solvents on the recovery of bioactives from violet potato peels, Foods 12(11), 2214 (2023) [CrossRef] [PubMed] [Google Scholar]
  16. J. Hong, T. Mu, H. Sun, A. Richel, C. Blecker, Valorization of the green waste parts from sweet potato (Impoea batatas L.): nutritional, phytochemical composition, and bioactivity evaluation, Food Science & Nutrition 8(8), 4086-4097 (2020) [CrossRef] [PubMed] [Google Scholar]
  17. N. Hu, K. Zhang, Y. Zhao, Z. Zhang, H. Li, Flotation-based dye removal system: sweet potato protein fabricated from agro-industrial waste as a collector and frother, Journal of Cleaner Production 269, 122121 (2020) [CrossRef] [Google Scholar]
  18. Y. Jin, L. Zhang, Z. Yi, Y. Fang, H. Zhao, Waste-to-energy: biobutanol production from cellulosic residue of sweet potato by Clostridia acetobutylicum, Environmental Engineering Research 27(5), 210372 (2022) [Google Scholar]
  19. E. Julianti, Z. Lubis, E. Yusraini, Ridwansyah, Physicochemical characteristics of fiber rich flour from solid waste of purple sweet potato starch processing, IOP Conference Series: Earth and Environmental Science 924, 012038 (2021) [CrossRef] [Google Scholar]
  20. Y. Lu, R. Chen, L. Huang, X. Wang, S. Chou, J. Zhu, Acidogenic fermentation of potato peel waste for volatile fatty acids production: effect of initial organic load, Journal of Biotechnology 374, 114-121 (2023) [CrossRef] [PubMed] [Google Scholar]
  21. I. Martínez-García, C. Gaona-Scheytt, S. Morante-Zarcero, I. Sierra, Development of a green, quick, and efficient method based on ultrasound-assisted extraction followed by HPLC-DAD for the analysis of bioactive glycoalkaloids in potato peel waste, Foods 13(5), 651 (2024) [CrossRef] [PubMed] [Google Scholar]
  22. F. Navarro, S. Torres, M.J. Aguirre, P. Castro, R. Melo, C. Corrial, H. Barrientos, M. Cotoras, L. Mendoza, Extracts with antifungal activity against Botrytis cinerea from potato industry waste, Food Bioscience 58, 103687 (2024) [CrossRef] [Google Scholar]
  23. T.-T. Nguyen, C. Rosselló, S. Mikhaylin, C. Ratti, Converting potato peel waste into bioactive extracts: reduction of pesticides by traditional and novel pretreatment technologies, Sustainable Food Technology 2, 386-399 (2024) [CrossRef] [Google Scholar]
  24. H.P.B. Nunes, C. Maduro Dias, A. Borba, Chemical composition and gas production kinetic parameters of sweet potato vine waste silage after preserved for short and prolonged periods, Multidisciplinary Science Journal 6(4), e2024041 (2024) [Google Scholar]
  25. S. Sethi, A. Joshi, M. Kumar, H.R. Raghavendra, B.K. Pooja, S.L. Nayak, O.P. Chauhan, Phenolic and antioxidant capacity retention of potato peel waste as a function of cultivar, pretreatment and drying procedure, Defence Life Science Journal 8(1), 71-82 (2023) [CrossRef] [Google Scholar]
  26. M.A. Valino, E. Julianti, H. Sinaga, Physicochemical and sensory characteristics of bread made from flour, starch and solid waste flour of purple sweet potatoes, IOP Conference Series: Earth and Environmental Science 454, 012114 (2020) [CrossRef] [Google Scholar]
  27. X. Zhang, Y. Zhang, D. Ijiri, A. Ohtsuka, Evaluation of effects of the dry-heat-processed sweet potato waste as broiler feed, Animal Science Journal 90(11), 1468-1474 (2019) [CrossRef] [PubMed] [Google Scholar]
  28. S. Casasni, A. Guenaoui, S. Grigorakis, D.P. Makris, Acid-catalyzed organosolv treatment of potato peels to boost release of polyphenolic compounds using 1-and 2-propanol, Applied Sciences 13(16), 9484 (2023) [CrossRef] [Google Scholar]
  29. Z. Diao, L. Zhang, Q. Li, X. Gao, X. Gao, M.K. Seliem, F. Dhaoudi, L. Sellaoui, S. Deng, A. Bonilla-Petriciolet, M. Badawi, Z. Li, Adsorption of food dyes from aqueous solution on a sweet potato residue-derived carbonaceous adsorbent: analytical interpretation of adsorption mechanisms via adsorbent characterization and statistical physics modeling, Chemical Engineering Journal 482, 148982 (2024) [CrossRef] [Google Scholar]
  30. V. Felekis, C. Stavraki, D. Malamis, S. Mai, E.M. Barampouti, Optimisation of bioethanol production in a potato processing industry, Fermentation 9(2), 103 (2023) [CrossRef] [Google Scholar]
  31. A.J. Haverkort, A.R. Linnemann, P.C. Struik, J.S.C. Wiskerke, On processing potato 3: survey of performances, productivity and losses in the supply chain, Potato Research 66, 385-427 (2023) [CrossRef] [Google Scholar]
  32. Y. Hu, K. Kang, I.Z. Alvarez, N. Mia, A. Rakhra, Simulation of O2-blown CO-gasification of wood chip and potato peel for producing syngas, Frontiers of Agricultural Science and Engineering 10(3), 448-457 (2023) [Google Scholar]
  33. B. Nemadziva, S. Ngubane, F. Matiza Ruzengwe, K. Kasumbwe, T. Kudanga, Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A, Biomass Conversion and Biorefinery 13, 13871-13882 (2023) [CrossRef] [Google Scholar]
  34. A. Shahapurkar, S.M. Joshi, T. Divyashree, K. Sasaki, S. Jogaiah, Bioactive carbohydrate from potato peels: a sweet inducer that mediate resistance against powdery mildew disease of cucumber through phytohormonal alterations, Biocatalysis and Agricultural Biotechnology 57, 103102 (2024) [CrossRef] [Google Scholar]
  35. O. Tița, M.A. Constantinescu, M.A. Tița, C. Bătușaru, I. Mironescu, Sensory, textural, physico-chemical and enzymatic characterization of melted cheese with added potato and carrot peels, Frontiers in Nutrition 10, 1260076 (2024) [CrossRef] [PubMed] [Google Scholar]
  36. J.A. Undiandeye, S. Kiman, J.V. Anaele, Production of medium chain fatty acids from ensiled potato peels; effect of inoculum type and kinetic study, Nigerian Journal of Technological Development 20(3), 47-53 (2023) [CrossRef] [Google Scholar]
  37. M.S. Almuhayawi, E.A. Hassan, K.K. Alkuwaity, T.S. Abujamel, J.A. Mokhtar, H.A. Niyazi, S.B. Almasaudi, T.A. Alamri, A.A. Najjar, N.M. Zabermawi, E.I. Azhar, R.M. Makki, H.A. Niyazi, S.M. Harakeh, Enzymatic-based hydrolysis of digested potato peel wastes by amylase producing fungi to improve biogas generation, Catalysts 13(5), 913 (2023) [CrossRef] [Google Scholar]
  38. A. Banerjee, M. Sailwal, M. Hafeez, A. Jana, J. Porwal, T. Bhaskar, D. Ghosh, Dilute acid hydrolysis and bioconversion of waste potato to ethanol and yeast lipid for evaluating carbon flow in waste biorefinery, BioEnergy Research 16, 203-212 (2023) [CrossRef] [Google Scholar]
  39. E.M. Barampouti, A. Christofi, D. Malamis, S. Mai, A sustainable approach to valorize potato peel waste towards biofuel production, Biomass Conversion and Biorefinery 13, 8197-8208 (2023) [CrossRef] [Google Scholar]
  40. I. Betlej, K. Rybak, M. Nowacka, A. Antczak, S. Borysiak, B. Krochmal-Marczak, K. Lipska, P. Boruszewski, Structural properties of bacterial cellulose film obtained on a substrate containing sweet potato waste, Crystals 12(9), 1191 (2022) [CrossRef] [Google Scholar]
  41. C. Catherine, M. Twizerimana, Biogas production from thermochemically pretreated sweet potato root waste, Heliyon 8(9), e10376 (2022) [CrossRef] [PubMed] [Google Scholar]
  42. X. Chen, X. Ma, X. Peng, Y. Lin, Z. Yao, Conversion of sweet potato waste to solid fuel via hydrothermal carbonization, Bioresource Technology 249, 900-907 (2018) [CrossRef] [PubMed] [Google Scholar]
  43. X. Chen, X. Ma, X. Peng, Y. Lin, J. Wang, C. Zheng, Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste, Bioresource Technology 267, 167-174 (2018) [CrossRef] [PubMed] [Google Scholar]
  44. X. Chen, X. Peng, X. Ma, J. Wang, Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste, Bioresource Technology 284, 286-292 (2019) [CrossRef] [PubMed] [Google Scholar]
  45. X. Chen, X. Peng, X. Ma, Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste: combustion performance of bio-oil and bio-char, Bioresource Technology 317, 123993 (2020) [CrossRef] [PubMed] [Google Scholar]
  46. R.A. Cripwell, R. My, L. Treu, S. Campanaro, L. Favaro, W.H. van Zyl, M. Viljoen-Bloom, Additional glucoamylase genes increase ethanol productivity on rice and potato waste streams by a recombinant amylolytic yeast, Bioresource Technology 388, 129787 (2023) [CrossRef] [PubMed] [Google Scholar]
  47. I.G.A.P. Dantayasa, I.W. Suarna, D.P.M.A. Candrawati, The benefits of purple sweet potato waste flour in the ratio of maintaining the quality of Lohmann brown chicken eggs, World Journal of Biology Pharmacy and Health Sciences 17(3), 087-095 (2024) [CrossRef] [Google Scholar]
  48. I.A. Escanciano, V.E. Santos, Á. Blanco, M. Ladero, Bioproduction of succinic acid from potato waste. Kinetic modeling, Industrial Crops and Products 203, 117124 (2023) [CrossRef] [Google Scholar]
  49. I.A. Escanciano, M. Ladero, Á. Blanco, V.E. Santos, Succinic acid production by Actinobacillus succinogenes using acid and enzymatic hydrolysates of potato and beer wastes and repeated batch operation, Biomass and Bioenergy 181, 107034 (2024) [CrossRef] [Google Scholar]
  50. D.A. Espinoza-García, B.d.M. Torres-Martínez, R.D. Vargas-Sánchez, G.R. Torrescano-Urrutia, A. Sánchez-Escalante, Valorization of potato peel waste as natural additive for use in meat products, Resources 12(12), 148 (2023) [CrossRef] [Google Scholar]
  51. M. Huang, J. Cheng, P. Chen, G. Zheng, D. Wang, Y. Hu, Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate, Journal of Environmental Management 237, 147-154 (2019) [CrossRef] [PubMed] [Google Scholar]
  52. J. Liang, C. Liu, H. Lu, G. Yang, G. Zhang, A. Wang, Enhanced anaerobic fermentation of potato waste for volatile fatty acid production by dilute sulfuric acid pretreatment: performance, microbial community, and gene expression, Journal of Water Process Engineering 59, 105054 (2024) [CrossRef] [Google Scholar]
  53. L. Mangiapelo, F. Blasi, F. Ianni, C. Barola, R. Galarini, G.W.A. Abualzulof, R. Sardella, C. Volpi, L. Cossignani, Optimization of ultrasound-assisted extraction of chlorogenic acid from potato sprout waste and enhancement of the in vitro total antioxidant capacity, Antioxidants 12(2), 348 (2023) [CrossRef] [PubMed] [Google Scholar]
  54. Q. Mushtaq, N. Joly, P. Martin, J.I. Qazi, Optimization of alkali treatment for production of fermentable sugars and phenolic compounds from potato peel waste using topographical characterization and FTIR spectroscopy, Molecules 28(21), 7250 (2023) [CrossRef] [PubMed] [Google Scholar]
  55. G.E. Ozer Uyar, B. Uyar, Potato peel waste fermentation by Rhizopus oryzae to produce lactic acid and ethanol, Food Science & Nutrition 11(10), 5908-5917 (2023) [CrossRef] [PubMed] [Google Scholar]
  56. S. Raina, R.K. Sharma, A. Rastogi, A.K. Pathak, N. Khan, V.K. Sharma, Boiled potato waste silage as an alternate roughage for goats, The Indian Journal of Animal Sciences 93(11), 1083-1090 (2023) [CrossRef] [Google Scholar]
  57. B. Rodríguez-Martínez, E. Coelho, B. Gullón, R. Yáñez, L. Domingues, Potato peels waste as a sustainable source for biotechnological production of biofuels: process optimization, Waste Management 155, 320-328 (2023) [CrossRef] [Google Scholar]
  58. Q. Shen, Y. Chen, H. Lin, Q. Wang, Y. Zhao, Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid, Environmental Science and Pollution Research 25, 8793-8799 (2018) [CrossRef] [PubMed] [Google Scholar]
  59. S.D. Shilviana, N.L. Suriani, I.K. Sundra, Utilization of organic fertilizer compost made from purple sweet potato waste (Ipomoea batatas L.) to increase the production of pakchoy (Brassica chinensis L.), AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment) 5(3), 1-6 (2021) [Google Scholar]
  60. G.A. Tenkolu, K.D. Kuffi, G.T. Gindaba, Optimization of fermentation condition in bioethanol production from waste potato and product characterization, Biomass Conversion and Biorefinery 14, 5205-5223 (2024) [CrossRef] [Google Scholar]
  61. C.T. Weber, L. Ranzan, L.L. Menz Liesegang, L. Ferreira Trierweiler, J.O. Trierweiler, A circular economy model for ethanol and alcohol-based hand sanitizer from sweet potato waste in the context of COVID-19, Brazilian Journal of Operations & Production Management 17(3), e20201025 (2020) [Google Scholar]
  62. K. Zhang, C. Lin, S. Zhao, W. Wang, W. Zhou, X. Ru, H. Cong, Q. Yang, The role of pH transcription factor Appacc in upregulation of pullulan biosynthesis in Aureobasidium pullulans using potato waste as a substrate, International Journal of Biological Macromolecules 242, 124797 (2023) [CrossRef] [PubMed] [Google Scholar]
  63. G. Das, J.K. Patra, N. Basavegowda, C.N. Vishnuprasad, H.-S. Shin, Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam, International Journal of Nanomedicine 14, 4741-4754 (2019) [CrossRef] [Google Scholar]
  64. Z. Riahi, A. Khan, J.-W. Rhim, G.H. Shin, J.T. Kim, Carrageenan-based active and intelligent packaging films integrated with anthocyanin and TiO2-doped carbon dots derived from sweet potato peels, International Journal of Biological Macromolecules 259, 129371 (2024) [CrossRef] [PubMed] [Google Scholar]
  65. O.O. Aboyeji, J.K. Oloke, A.O. Arinkoola, M.A. Oke, M.M. Ishola, Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger, Scientific African 10, e00554 (2020) [CrossRef] [Google Scholar]
  66. M.F.A. Bakar, Y. Ranneh, N.F.M. Kamil, Development of high fiber rich antioxidant biscuits from purple and orange sweet potato peels, Food Research 6(1), 12-19 (2022) [CrossRef] [Google Scholar]
  67. S. Saeed, M. Tayyab, T. Mehmood, A.R. Awan, S. Firyal, F. Nadeem, M. Irfan, Valorization of potato peel for production of alginate and optimization of the process through response surface methodology (RSM) by using Azotobacter nigricans, Biomass Conversion and Biorefinery 13, 3893-3901 (2023) [CrossRef] [Google Scholar]
  68. S.K. Soni, B. Sharma, A. Sharma, B. Thakur, R. Soni, Exploring the potential of potato peels for bioethanol production through various pretreatment strategies and an in-house-produced multi-enzyme system, Sustainability 15(11), 9137 (2023) [CrossRef] [Google Scholar]
  69. Y. Gao, Z. Yi, J. Wang, F. Ding, Y. Fang, A. Du, Y. Jiang, H. Zhao, Y. Jin, Interpretation of the adsorption process of toxic Cd2+ removal by modified sweet potato residue, RSC Advances 14, 433-444 (2024) [CrossRef] [PubMed] [Google Scholar]
  70. Y.L. Jin, F. Ding, W.L. Shen, Y. Fang, Z.L. Yi, L. Yang, H. Zhao, Production of microbiological protein feed from sweet potato (Ipomoea batatas L. Lam) residue by co-cultivation Saccharomyces cerevisiae and Candida utilis, Journal of Animal & Plant Sciences 33(3), 592-600 (2023) [Google Scholar]
  71. S. Xu, S. Xu, X. Ge, L. Tan, T. Liu, Low-cost and highly efficient production of bacterial cellulose from sweet potato residues: optimization, characterization, and application, International Journal of Biological Macromolecules 196, 172-179 (2022) [CrossRef] [PubMed] [Google Scholar]
  72. M. Vannini, P. Marchese, L. Sisti, A. Saccani, T. Mu, H. Sun, A. Celli, Integrated efforts for the valorization of sweet potato by-products within a circular economy concept: biocomposites for packaging applications close the loop, Polymers 13(7), 1048 (2021) [CrossRef] [PubMed] [Google Scholar]
  73. E. Zhang, J. Li, K. Zhang, F. Wang, H. Yang, S. Zhi, G. Liu, Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions, AMB Express 8, 45 (2018) [CrossRef] [PubMed] [Google Scholar]
  74. C.F. Luthuli, F.N. Fon, B. Gunya, Knowledge and perception of small holding farmers on supplementation and feeding sweet potato vines to goats, Pastoralism 9, 18 (2019) [Google Scholar]
  75. L. Yang, Y. Xi, X.-Y. Luo, H. Ni, H.-H. Li, Preparation of peroxidase and phenolics using discarded sweet potato old stems, Scientific Reports 9, 3769 (2019) [CrossRef] [PubMed] [Google Scholar]
  76. S. Nurdjanah, Chlorophyll, ascorbic acid and total phenolic contents of sweet potato leaves affected by minimum postharvest handling treatment, IOP Conference Series: Earth and Environmental Science 209, 012025 (2018) [CrossRef] [Google Scholar]
  77. H. Zhang, T. Lei, S. Lu, S. Zhu, Y. Li, Q. Zhang, Z. Zhang, Study on comparisons of bio-hydrogen yield potential and energy conversion efficiency between stem and leaf of sweet potato by photo-fermentation, Fermentation 8(4), 165 (2022) [CrossRef] [Google Scholar]
  78. Y. Zhang, S. Bian, J. Hu, G. Liu, S. Peng, H. Chen, Z. Jiang, T. Wang, Q. Ye, H. Zhu, Natural deep eutectic solvent-based microwave-assisted extraction of total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves: optimization and antioxidant and bacteriostatic activity, Molecules 27(18), 5985 (2022) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.