Open Access
Issue |
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 10 | |
Section | Renewable Energy Sources | |
DOI | https://doi.org/10.1051/e3sconf/202456401005 | |
Published online | 06 September 2024 |
- L. Mateu, F. Moll. Optimum energy harvesting from piezoelectric sources. IEEE Trans. Power Electron., 24, 3, 885–894, (2009) [Google Scholar]
- E.M. Yeatman, A. Erturk. Microfabricated piezoelectric power generator for implantable devices. IEEE Trans. Circuits Syst. I, Reg. Pap., 56, 11, 2614–2623, (2009) [Google Scholar]
- S.P. Beeby, J.M. Tudor, N.M. White. Energy harvesting vibration sources for microsystems. IEEE Sensors J., 6, 3, 1369–1384, (2006) [Google Scholar]
- S. Priya, D.J. Inman. Energy harvesting technologies.Springer Sci. Bus Med., (2009) [Google Scholar]
- P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes. Embedded power harvesting from vibration using piezoelectric materials. J. Micromech. Microeng., 14, 1, 130–137, (2004) [Google Scholar]
- N.S. Hudak, G.G. Leisk, T.P. Moriarty. Designing for ultra-low-power systems. IEEE Spectrum, 31, 12, 40–45, (1994) [Google Scholar]
- S. Meninger, J. Linderman, B.P. Mateu, J.O. Ramos. Vibration energy harvesting towards a self-powered wireless sensor network. IEEE Trans. Ind. Electron., 53, 4, 960–980, (2006) [Google Scholar]
- C. Shen, C.Xu, Z.L. Wang, Y.S. Wang. High-performance piezoelectric nanogenerators under ambient mechanical conditions. Sci. Adv., 5, 7, (2019) [CrossRef] [Google Scholar]
- Y. Qi, T. Jing, Y. Luo, Q. Wang, Z. L. Wang. Self-powered flexible and transparent nanogenerators for powering portable electronics. Nano Energy, 14, 169–180, (2015) [Google Scholar]
- M. Amirtharajah, D.J. Inman. Energy harvesting from low-frequency ambient vibrations using piezoelectric materials. Smart Mater. Struct., 17, 4, (2008) [Google Scholar]
- E.M. Abdel-Rahman, S.M. Shaalan, A. H. El-Shahat. Review of vibration energy harvesting using piezoelectric materials. Renew. Sustain. Energy Rev., 74, 1185–1193, (2017) [Google Scholar]
- S. Priya, H.S. Kim, K. Ryu, C.T. Lin, C.P. Wong, M. Younis. Piezoelectric energy harvesting—power sources for wireless sensor networks.Energy Harvest. Syst., Springer, 3–45. [Google Scholar]
- A. Khaligh, P. Miri-Belkheir, M. Darabi. Micropower Energy Harvesting System with Integrated Circuit for Piezoelectric Transducers. IEEE Trans. Ind. Electron., (2010) [Google Scholar]
- Y. Qi, J. Liu, W.J. Li, T. You. Synchronous Charge Extraction for Enhanced Power Harvesting from Piezoelectric Microcantilevers. J. Micromech. Microeng., (2014) [Google Scholar]
- S.P. Beeby, M.J. Tudor, N.M. White. Millimeter-Scale Piezoelectric Energy Harvester with Frequency Up-Conversion for Low-Frequency Applications.Sens. Actuators A: Phys., (2006) [Google Scholar]
- X. Li, P. Wang, Y. Hu, C. Xu. A Comprehensive Review on Piezoelectric Energy Harvesting for Wearable Devices. Nano Energy, (2018) [Google Scholar]
- S.D. Gaura, A. Ghosh, A. Karmakar, S. Pamukcu, Y.S. Lee. Ultra-Low-Power Wireless Sensor Network for Structural Health Monitoring Using Piezoelectric Transducers. Sens. Actuators A: Phys., (2017) [Google Scholar]
- A. Gupta, A. Kumar Srivastava. Artificial Intelligence – Smart Energy Distribution and Management System for small autonomous Photo-voltaic System.1st International Conference on Intelligent Computing and Research Trends (ICRT), IEEE Sponsored Conference, Roorkee Institute of Technology, (2023) [Google Scholar]
- S. Kimothi, A. Thapiyal, A. Gehlot, A.N. Aledaily, A. Gupta. Spatio-temporal fluctuations analysis of land surface temperature (LST) using Remote Sensing data (Landsat TM5/8) and multifractal technique to characterize the urban heat Islands (UHIs). In Sustainable Energy Technologies and Assessments, Elsevier, (2022) [Google Scholar]
- N.Soin. Attractive Nanoparticles — Piezoelectric Polymer Nanocomposites for Energy Gathering. In: Attractive Nanostructured Materials. Elsevier, 295-322, (2018) [Google Scholar]
- Aghaeiboorkheili, M., and Aezeden Mohamed. (2021). Applications of mechanical engineering mathematics: Solving Neumann problem with discontinuous coefficients, Journal of Interdisciplinary Mathematics, Vol. 24 (5): 1429-1439. https://doi.org/10.1080/09720502.2021.1930661 [CrossRef] [Google Scholar]
- Mishra, S., Aezeden Mohmed, Pattnaik, P. K., Muduli, K., & Ahmad, T. S. T. (2022). Soft Computing Techniques to Identify the Symptoms for COVID-19. In Advances in Data Science and Management: Proceedings of ICDSM 2021 (pp. 283-293). https://doi.org/10.1007/978-981-16-5685-9_27 [Google Scholar]
- Abbas Helmi, R. A., Salsabil Bin Eddy Yusuf, S., Jamal, A., & bin Abdullah, M. I. (2019). Face Recognition Automatic Class Attendance System (FRACAS). 2019 IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2019 - Proceedings, 50–55. https://doi.org/10.1109/I2CACIS.2019.8825049 [Google Scholar]
- Abdullah, M. I., Hao, S. K., Abdullah, I., & Faizah, S. (2023). Parkinson’s Disease Symptom Detection using Hybrid Feature Extraction and Classification Model. 2023 IEEE 14th Control and System Graduate Research Colloquium, ICSGRC 2023 - Conference Proceeding, 93–98. [Google Scholar]
- Pragathi, B., and P. Ramu. “Authentication Technique for Safeguarding Privacy in Smart Grid Settings.” E3S Web of Conferences. Vol. 540. EDP Sciences, 2024. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.