Open Access
Issue
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
Article Number 03004
Number of page(s) 5
Section Power Converters
DOI https://doi.org/10.1051/e3sconf/202456403004
Published online 06 September 2024
  1. Salem, A., Van Khang, H., Robbersmyr, K. G., Norambuena, M., & Rodriguez, J. (2021). Voltage source multilevel inverters with reduced device count: Topological review and novel comparative factors. IEEE Transactions on Power Electronics, 36(3), 2720–2747. [CrossRef] [Google Scholar]
  2. Liu, Q., Caldognetto, T., & Buso, S. (2020). Review and comparison of grid-tied inverter controllers in microgrids. IEEE Transactions on Power Electronics, 35(7), 7624–7639. [CrossRef] [Google Scholar]
  3. Akbari, A., Poloei, F., & Bakhshai, A. (2019). A brief review on state-of-the-art grid-connected inverters for photovoltaic applications. In Proceedings of the IEEE 28th International Symposium on Industrial Electronics (ISIE) (pp. 1023–1028). Vancouver, BC, Canada. [Google Scholar]
  4. Ebrahimi, J., &Karshenas, H. (2019). A new single DC source six-level flying capacitor based converter with wide operating range. IEEE Transactions on Power Electronics, 34(3), 2149–2158. [CrossRef] [Google Scholar]
  5. Gatla, R.K., Kshatri, S.S., Sridhar, P., Malleswararao, D.S., Kumar, D.G., Kumar, A.S., Lu, J.H. (2022). Impact of mission profile on reliability of grid-connected photovoltaic inverter, Journal Européen des Systèmes Automatisés, Vol. 55, No. 1, pp. 119-124, 2022, https://doi.org/10.18280/jesa.550112 [CrossRef] [Google Scholar]
  6. G. Ranjith Kumar, M. Arun Noyal Doss, K. N. V. Prasad and K. C. Jayasankar, Modeling and speed control of permanent magnet synchronous Motor at constant load torque using PSIM, International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2011), Chennai, 2011, pp. 485-489, doi: 10.1049/cp.2011.0411. [CrossRef] [Google Scholar]
  7. Kouro, S., et al. (2010). Recent advances and industrial applications of multilevel converters. *IEEE Transactions on Industrial Electronics, 57*(8), 2553–2580. [CrossRef] [Google Scholar]
  8. Vijeh, M., Rezanejad, M., Samadaei, E., & Bertilsson, K. (2019). A general review of multilevel inverters based on main submodules: Structural point of view. IEEE Transactions on Power Electronics, 34(10), 9479–9502. [CrossRef] [Google Scholar]
  9. Ebrahimi, J., &Karshenas, H. (2021). A new modulation scheme for a four-level single flying capacitor converter. IEEE Transactions on Industrial Electronics, 68(3), 1860–1870. [CrossRef] [Google Scholar]
  10. Li, W., Gu, Y., Luo, H., Cui, W., He, X., & Xia, C. (2015). Topology review and derivation methodology of single-phase transformerless photovoltaic inverters for leakage current suppression. IEEE Transactions on Industrial Electronics, 62(7), 4537–4551. [CrossRef] [Google Scholar]
  11. Gatla, R.K., Guorong Z, Jianghua L, Sainadh Singh K, Gireesh Kumar D, The impact of mission profile on system level reliability of cascaded H-bridge multilevel PV inverter, Microelectronics Reliability, Elsevier publication, Volume 138,114639,2022, https://doi.org/10.1016/j.microrel.2022.114639 [CrossRef] [Google Scholar]
  12. Sayanti Chatterjee, Ranjith Kumar G, Pampa Sinha, Chitralekha Jena, Shubhasri Kundu, Babita Panda, Lipika Nanda, Arjyadhara P, Fault detection of a Li-ion battery using SVM based machine learning and unscented Kalman filter, Materials Today: Proceedings, Elsevier publication, 2022, https://doi.org/10.1016/j.matpr.2022.10.279. [Google Scholar]
  13. Samadaei, E., Sheikholeslami, A., Gholamian, S. A., &Adabi, J. (2018). A square T-type (ST-type) module for asymmetrical multilevel inverters. IEEE Transactions on Power Electronics, 33(2), 987–996. [CrossRef] [Google Scholar]
  14. Samadaei, E., Kaviani, M., & Bertilsson, K. (2019). A 13-levels module (K-type) with two DC sources for multilevel inverters. IEEE Transactions on Industrial Electronics, 66(7), 5186–5196. [CrossRef] [Google Scholar]
  15. Samadaei, E., Gholamian, S. A., Sheikholeslami, A., &Adabi, J. (2016). An envelope type (E-type) module: Asymmetric multilevel inverters with reduced components. IEEE Transactions on Industrial Electronics, 63(11), 7148–7156. [CrossRef] [Google Scholar]
  16. Yahya, A., Usman Ali, S. M., & Ghani, A. (2019). New level doubling architecture of cascaded multilevel inverter. IET Power Electronics, 12(8), 1891–1902. [CrossRef] [Google Scholar]
  17. Babaei, E., Laali, S., & Bayat, Z. (2015). A single- phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches. IEEE Transactions on Industrial Electronics, 62(2), 922–929. [CrossRef] [Google Scholar]
  18. ToupchiKhosroshahi, M. (2014). Crisscross cascade multilevel inverter with reduction in number of components. IET Power Electronics, 7(12), 2914–2924. [CrossRef] [Google Scholar]
  19. Khenar, M., Taghvaie, A., Adabi, J., & Rezanejad, M. (2018). Multi-level inverter with combined T- type and cross-connected modules. IET Power Electronics, 11(8), 1407–1415. [CrossRef] [Google Scholar]
  20. Thamizharasan, S., Baskaran, J., Ramkumar, S., & Jeevananthan, S. (2014). Cross-switched multilevel inverter using auxiliary reverse-connected voltage sources. IET Power Electronics, 7(6), 1519–1526. [CrossRef] [Google Scholar]
  21. Niu, D., et al. (2020). A nine-level T-type packed U-cell inverter. IEEE Transactions on Power Electronics, 35*(2), 1171–1175. [CrossRef] [Google Scholar]
  22. Ali, A. I. M., Sayed, M. A., Mohamed, E. E. M., & Azmy, A. M. (2019). Advanced single-phase nine- level converter for the integration of multiterminal DC supplies. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(3), 1949–1958. [CrossRef] [Google Scholar]
  23. Ebrahimi, J., Babaei, E., &Gharehpetian, G. B. (2012). A new multilevel converter topology with reduced number of power electronic components. IEEE Transactions on Industrial Electronics, 59(2), 655–667. [CrossRef] [Google Scholar]
  24. Ebrahimi, J., Babaei, E., &Gharehpetian, G. B. (2011). A new topology of cascaded multilevel converters with reduced number of components for high-voltage applications. IEEE Transactions on Power Electronics, 26(11), 3109–3118. [CrossRef] [Google Scholar]
  25. Mohamed Ali, J. S., Alishah, R. S., & Krishnasamy, V. (2019). A new generalized multilevel converter topology with reduced voltage on switches, power losses, and components. *IEEE Journal of Emerging and Selected Topics in Power Electronics, 7*(2), 1094–1106. [CrossRef] [Google Scholar]
  26. D Gireesh Kumar, N V Sireesha, DSNM Rao, L Kasireddy, Bharath K N, Gatla, R.K, P. Chandra Babu, S. Saravanan, Modelling of symmetric switched capacitor multilevel inverter for high power appliances, Journal of New Materials for Electrochemical Systems, Vol. 26, No.1, pp.18-25 https://doi.org/10.14447/jnmes.v26i1.a03, 2023. [CrossRef] [Google Scholar]
  27. Sainadh S K, N V Sireesha, DSNM Rao, Gatla, R.K, T K Kumar, D Gireesh Kumar, Reliability Assessment of Hybrid Silicon-Silicon Carbide IGBT Implemented on an Inverter for Photovoltaic Applications, Journal of New Materials for Electrochemical Systems, Vol. 26, No.1, pp. 1-6, x https://doi.org/10.14447/jnmes.v26i1.a01, 2023 [CrossRef] [Google Scholar]
  28. Mohamed Ali, J. S., et al. (2019). A new generalized multilevel converter topology based on cascaded connection of basic units. *IEEE Journal of Emerging and Selected Topics in Power Electronics, 7*(4), 2498–2512. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.