Open Access
Issue
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
Article Number 06005
Number of page(s) 9
Section Hydro-Thermal Power Generation
DOI https://doi.org/10.1051/e3sconf/202456406005
Published online 06 September 2024
  1. S.U. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29), (Argonne National Lab., IL, United States, 1995) [Google Scholar]
  2. W. Voigt, Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften in Gottingen, (1887) [Google Scholar]
  3. E. Cosserat, F. Cosserat, theorie des corps deformables, Hermann, Paris, (1909) https://doi.org/10.1038/081067a0) [Google Scholar]
  4. A. C. Eringen, Linear theory of Micropolar elasticity, J. Math. Mech., 15, 090 – 923(1966). http://www.jstor.org/stable/24901442 [Google Scholar]
  5. N. Sohail, N. K., Muhammad, M. Noor, and A. Shafiq, Mathematical analysis of Bio-convective micropolar nanofluid. Journal of Computational Design and Engineering, 6, 233 – 242, (2019). [CrossRef] [Google Scholar]
  6. O. K. Koriko, N. A., Shah, S., Saleem, J. D., Chung, A. J., Omowaye, Oreyeni, T., Exploration of bioconvection flow of MHD thixotropic nanofluid past a vertical surface coexisting with both nanoparticles and gyrotactic microorganisms. Sci. Rep., 11,16627 (2021) [CrossRef] [Google Scholar]
  7. K., Rafique, M. I., Anwar, and M.. Misiran, Numerical study on micropolar nanofluid flow over an inclined surface by means of keller-box. Asian J. Probab. Stat, 4, 1-21, (2019) [Google Scholar]
  8. F. Mabood, M. D, Shamshuddin, S. R.Mishra. Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving plate: HAM solution. Math. Comput. Simul., 191, 187 – 202, (2022). [CrossRef] [Google Scholar]
  9. I. Papautsky, J. Brazzle, T. Ameel, A.B. Frazier, Laminar fluid behavior in microchannels using micropolar fluid theory, Sens. Actuat. A: Phys. 73 (1–2) 101–108, (1999) [CrossRef] [Google Scholar]
  10. A. Kumar, V. Sugunamma, N. Sandeep, Numerical exploration of MHD radiative micropolar liquid flow driven by stretching sheet with primary slip: a comparative study, J. Non-Equilibrium Thermodyn. 44 (2) 101–122, (2019). [CrossRef] [Google Scholar]
  11. G. Sarojamma, R. Vijaya Lakshmi, P.V. Satya Narayana, K. Vajravelu, Variable thermal conductivity and thermal radiation effect on the motion of a micro polar fluid over an upper surface, J. Appl. Comput. Mech. 5 (2) 441–453, (2019) [Google Scholar]
  12. K. A. Kumar, V. Sugunamma, N. Sandeep, Physical aspects on unsteady MHD-free convective stagnation point flow of micropolar fluid over a stretching surface, Heat Tran. Asian Res. 48 (8) 3968–3985, (2019) [CrossRef] [Google Scholar]
  13. S. Dero, A.M. Rohni, A. Saaban, I. Khan, Dual solutions and stability analysis of micropolar nanofluid flow with slip effect on stretching/shrinking surfaces, Energies 12 (23) 4529, (2019). [CrossRef] [Google Scholar]
  14. D. Mahanty, R. Babu, B. Mahanthesh, Theoretical and Analytical Analysis of Convective Heat Transport of Radiated Micropolar Fluid over a Vertical Plate under Nonlinear Boussinesq Approximation. Multidiscipline Modeling in Materials and Structures, (2020). [Google Scholar]
  15. Z.,Abdelmalek, U., Nazir, M., Nawaz, J., Alebraheem, and A. Elmoasry, Double diffusion in Carreau liquid suspended with hybrid nanoparticles in the presence of heat generation and chemical reaction. International Communications in Heat and Mass Transfer, 119, 104932, (2020). [CrossRef] [Google Scholar]
  16. S., Ahmad, Naveed M., Khan, and S. Nadeem, Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction. International Journal of Ambient Energy, 43(1), 6542-6552, (2022). [CrossRef] [Google Scholar]
  17. T. Rawat, J. Singh and S. Sharma, “Performance Analysis of 400 kWp Rooftop Solar Plant at Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur using PVsyst,” 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 2023, pp. 1-6, doi: 10.1109/PIECON56912.2023.10085828. [Google Scholar]
  18. K. A. M., Alharbi, Z., Khan, S., Zuhra, S., Islam, A., Ali, E. Tag-Eldin, and S. R. Mahmoud, Numerical Study of the Electromagnetohydrodynamic Bioconvection Flow of Micropolar Nanofluid through a Stretching Sheet with Thermal Radiation and Stratification. ACS omega, 7(47), 42733-42751, (2022). [CrossRef] [PubMed] [Google Scholar]
  19. S. U., Choi, and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). (Argonne National Lab.(ANL), United States, 1995). [Google Scholar]
  20. R. M., Kasmani, S., Sivasankaran, M., Bhuvaneswari, and Z. Siri, Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction. Journal of Applied Fluid Mechanics, 9(1), 379-388, (2015). [Google Scholar]
  21. M. N., Khan, and S. Nadeem, Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet. Canadian Journal of Physics, 98(8), 732-741, (2020). [CrossRef] [Google Scholar]
  22. A. O., Areo, O.A. Olajide., P. Adegbite, B.U. Anifowose and I. Adetunde The Effect of Variable Properties on Magnetohydrodynamics (MHD) Flow through a Vertical Channel, Journal of Applied and Computational Mathematics 11, 501(2022) [Google Scholar]
  23. O. A. Ajala and P. Adegbite Hydromagnetic Flow of Micropolar Nanofluids with Co-effects of Thermal Radiation and Chemical Reaction over an Inclined Permeable Stretching Surface, Beni–Suef Univ. J. Basic Appl Sci. 12:86 (2023) https://doi.org/10.1186/s43088-023-00424-2 [CrossRef] [Google Scholar]
  24. M. S., Kausar, D. S. K., Reddy, A. A., Pasha, and M. Mamat, Effect of porous dissipation on nonlinear radiative flow of viscous fluid over a stretching sheet. International Journal of Modern Physics B, 2350220, (2023). [Google Scholar]
  25. M. A., Mjankwi, V. G., Masanja, E. W., Mureithi, and M. N. O., James, Unsteady MHD flow of nanofluid with variable properties over a stretching sheet in the presence of thermal radiation and chemical reaction. International Journal of Mathematics and Mathematical Sciences, (2019). [Google Scholar]
  26. M., Nasir, M., Waqas, O. A., Bég, H. F. M., Ameen, N., Zamri, K., Guedri, and S. M. Eldin, Analysis of Nonlinear Convection–Radiation in Chemically Reactive Oldroyd-B Nanoliquid Configured by a Stretching Surface with Robin Conditions : Applications in Nano-Coating Manufacturing. Micromachines, 13(12), 2196, (2022). [CrossRef] [PubMed] [Google Scholar]
  27. B., Nagaraja, and B. J., Gireesha, Exponential space- dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction. Journal of Thermal Analysis and Calorimetry, 143, 4071-4079, (2021). [CrossRef] [Google Scholar]
  28. M., Ramzan, Z., Un Nisa, M., Ahmad, and M. Nazar, Flow of Brinkman fluid with heat generation and chemical reaction. Complexity, 2021, 1-11, (2021). [Google Scholar]
  29. Q. H., Shi, A., Hamid, M. I., Khan, R. N., Kumar, R. P., Gowda, B. C., Prasannakumara, and J. D. Chung, Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy. Scientific Reports, 11(1), 16030, (2021). [CrossRef] [PubMed] [Google Scholar]
  30. O.A. Ajala, P. Adegbite, S.F. Abimbade, A.M. Obalalu, Thermal Radiation and Convective Heating on Hydromagnetic Boundary Layer Flow of Nanofluids over a Permeable Stretching Surface, International Journal of Applied Mathematics and Statistical Sciences, 8(2), 43 – 58 (2019). [Google Scholar]
  31. M., Waqas, M. A., Sadiq, and H. M. Bahaidarah, Gyrotactic bioconvection stratified flow of magnetized micropolar nanoliquid configured by stretchable radiating surface with Joule heating and viscous dissipation. International Communications in Heat and Mass Transfer, 138, 106229, (2022). [CrossRef] [Google Scholar]
  32. A. M. Obalalu, W. F. Alfwzan, M. A. Memon, A. Darvesh, P. Adegbite, A. S. Hendy, M. R. Ali Energy optimization of quadratic thermal convection on two-phase boundary layer flow across a moving vertical flat plate, Case Studies in Thermal Engineering, 55(104073) (2024) [CrossRef] [Google Scholar]
  33. Y., Zhang, and L. Zheng, Analysis of MHD thermosolutal Marangoni convection with the heat generation and a first-order chemical reaction. Chemical Engineering Science, 69(1), 449-455, (2012). [CrossRef] [Google Scholar]
  34. S., Abdal, H., Alhumade, I., Siddique, M. M., Alam, I., Ahmad, and S. Hussain, Radiation and multiple slip effects on magnetohydrodynamic bioconvection flow of micropolar based nanofluid over a stretching surface. Applied Sciences, 11(11), 5136, (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.