Open Access
Issue
E3S Web Conf.
Volume 565, 2024
2024 5th International Conference on Urban Engineering and Management Science (ICUEMS2024)
Article Number 03021
Number of page(s) 9
Section Intelligent Transportation and Sustainable Urban Development
DOI https://doi.org/10.1051/e3sconf/202456503021
Published online 09 September 2024
  1. Hunt, J.D. (1975) Image as a factor in tourism development. Journal of Travel Research, 13(3): 1–7. [CrossRef] [Google Scholar]
  2. Bigne, E., Fuentes-Medina, M.L., Morini-Marrero, S. (2020) Memorable tourist experiences versus ordinary tourist experiences analysed through user-generated content. Journal of Hospitality and Tourism Management, 45: 309–318. [CrossRef] [Google Scholar]
  3. Wang, J., Chen, X.Y., Chen, Z.L., Lin, S.Q., Qin, S.H. (2023) Study on the Perceived Image of Tourists in Intangible Cultural Heritage Tourism Blocks Based on Web Text Analysis: The Case of Yongqingfang in Guangzhou City. Journal of Guangdong Agribusiness and Polytechnic, (01): 36–42. [Google Scholar]
  4. Zhang, C.Y., Liu, Y.K., Zhao, B.Q., Chai, J., Jiang, F.X. (2023) Destination Image Mining of “Tang Culture” Based on Online Text Sentiment Analysis. Journal of Econometrics, (02): 387–407. [Google Scholar]
  5. Ye, G.H., Xu, T., Bi, C.W., Li, X.Y. (2020) Evolution Analysis of Urban Tourism Portrait Based on Multidimensional Features and LDA Model. Data Analysis and Knowledge Discovery, (11): 121–130. [Google Scholar]
  6. Li, J.Y., Zhu, H.J., Fu, L.L. (2020) Spatio-temporal Changes in the Emotional Experience of Domestic Tourists in Xi’an Based on Big Data. Geography of Arid Areas, (04): 1067–1076. [Google Scholar]
  7. Fang, M.J., Zheng, Y.D., Xia, Z.X., Yan, H., Shao, F. (2020) Spatiotemporal Variation of Tourist Emotions Based on Weibo Big Data: A Case Study of Xixi National Wetland Park, Hangzhou. Journal of Southwest University (Natural Science Edition), (03): 156–164. [Google Scholar]
  8. Dai, D.X., Chen, Y.X. (2022) Cultural Service Perception Evaluation of Urban Historic Park Renovation Based on Sentiment Computation: A Case Study of Lu Xun Park. Journal of Tongji University (Social Science Section), (03): 81–90. [Google Scholar]
  9. Wang, H.Q., Chen, R., Wei, S.Q., Gui, L., Fei, T. (2020) Mining Geographical Sentiment Features Using Chinese Weibo Data. Journal of Wuhan University (Information Science Edition), (05): 699–708. [Google Scholar]
  10. Zhou, G., Liu, Y., Hu, J., Cao, X. (2023) The effect of tourist-to-tourist interaction on tourists’ behavior: The mediating effects of positive emotions and memorable tourism experiences. Journal of Hospitality and Tourism Management, 55: 161–168. [CrossRef] [Google Scholar]
  11. Wang, M., Li, J.Y. (2021) Study on the Impact of Urban Historical Cultural District Landscapes on Tourists’ Emotions and Behavioral Intentions: A Case Study of Xi’an Historical Cultural Districts. Journal of Southwest University (Natural Science Edition), (10): 146–153. [Google Scholar]
  12. Wang, S., Kim, S., Agrusa, J. (2018) A comparative study of perceptions of destination advertising according to message appeal and endorsement type. Asia Pacific Journal of Tourism Research, 23(1): 24–41. [CrossRef] [Google Scholar]
  13. Ma, Y., Ling, C., Wu, J. (2020) Exploring the spatial distribution characteristics of emotions of weibo users in wuhan waterfront based on gender differences using social media texts. ISPRS International Journal of Geo-Information, 9(8): 465. [CrossRef] [Google Scholar]
  14. Šagovnović, I., Kovačić, S., Kurež, B., Tretyakova, T. N., Syromiatnikova, Y. A. (2023) Getting Closely Attached to It: The Role of Destination Personality and Emotional Experience in tourists’ Attachment to a Tourist Destination. International Journal of Hospitality & Tourism Administration, 1–35. [Google Scholar]
  15. Rahmani, K., Gnoth, J., Mather, D. (2019) A psycholinguistic view of tourists’ emotional experiences. Journal of Travel Research, 58(2): 192–206. [CrossRef] [Google Scholar]
  16. Prayag, G., Hosany, S., Muskat, B., Del Chiappa, G. (2017) Understanding the relationships between tourists’ emotional experiences, perceived overall image, satisfaction, and intention to recommend. Journal of Travel Research, 56(1): 41–54. [CrossRef] [Google Scholar]
  17. Yang, Y., Wang, Z., Shen, H., Jiang, N. (2023) The Impact of Emotional Experience on Tourists’ Cultural Identity and Behavior in the Cultural Heritage Tourism Context: An Empirical Study on Dunhuang Mogao Grottoes. Sustainability, 15(11): 8823. [CrossRef] [Google Scholar]
  18. Chen, X., Li, J., Han, W., Liu, S. (2021) Urban tourism destination image perception based on LDA integrating social network and emotion analysis: the example of Wuhan. Sustainability, 14(1): 12. [CrossRef] [Google Scholar]
  19. Huo, Y.H., Li, Y. (2023) Public Perception of Urban Canal Cultural Landscapes: The Case of Yangzhou. Landscape Architecture, (02): 89–96. [Google Scholar]
  20. Liang, C.C., Li, R.J. (2020) Perception Analysis of Lijiang Ancient Town Image Integrating LDA and Feature Dimensions. Progress in Geography Science, (04): 614–626. [CrossRef] [Google Scholar]
  21. Li, Y.J., Cao, H.L., Li, C.R., Wang, R., Zeng, H.C., Jia, Y.Y. (2018) Study on Spatial Structure and Tourist Spatial Perception of Historic Districts in Wuhan. Resource Development & Market, (11): 1599–1603+1622. [Google Scholar]
  22. Shan, B., Li, F. (2010) A Review of LDA Topic Evolution Research Methods. Journal of Chinese Information Processing, (06): 43–49+68. [Google Scholar]
  23. Feng, Y., Qu, B.H., Xu, H.Y., Wang, R.B., Zhang, Y.G. (2019) A Chinese FastText Short Text Classification Method Integrating TF-IDF and LDA. Journal of Applied Sciences, (03): 378–388. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.