Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01014
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202456701014
Published online 09 September 2024
  1. Kristjansdottir, K., Shafiee, S., Hvam, L., Forza, C., & Mortensen, N.H. (2018). The main challenges for manufacturing companies in implementing and utilizing configurators. Computers in Industry, (100), 196–211. https://doi.org/10.1016/j.compind.2018.05.001 [CrossRef] [Google Scholar]
  2. MathWorks. (2022). Production Forecasting for Mining Operations with Simulation – a case study with SIMEC. SIMEC: White paper, 1–7. Retrieved from https://www.mathworks.com/content/dam/mathworks/white-paper/production-forecasting-pit-to-port-whitepaper.pdf [Google Scholar]
  3. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2021). Investigation of the Rockburst Mechanism of Driving Roadways in Close-Distance Coal Seam Mining Using Numerical Modeling Method. Mining, Metallurgy & Exploration, 38(5), 1899–1921. https://doi.org/10.1007/s42461-021-00471-2 [Google Scholar]
  4. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D., & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2 [CrossRef] [Google Scholar]
  5. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [CrossRef] [EDP Sciences] [Google Scholar]
  6. Lewicka, D., Zarębska, J., Batko, R., Tarczydło, B., Wożniak, M., Cichoń, D., & Pec, M. (2023). Circular Economy in the European Union. Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, 21–267 https://doi.org/10.4324/9781003411239 [Google Scholar]
  7. Lööw, J. (2022). Understanding technology in mining and its effect on the work environment. Miner Economy, (35), 143–154 https://doi.org/10.1007/s13563-021-00279-y [Google Scholar]
  8. Polyanska, A., Cichoń, D., Verbovska, L., Dudek, M., Sala, D., Martynets, V. (2022). Waste management skills formation in modern conditions: the example of Ukraine. Financial and Credit Activity: Problems of Theory and Practice, 4(45), 322–334. https://doi.org/10.55643/fcaptp.4.45.2022.3814 [CrossRef] [Google Scholar]
  9. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30–36 [Google Scholar]
  10. Dudek, M. (2017). The analysis of the low-cost flexibility corridors. In 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (pp. 478–483). Gdynia, Poland: Gdynia Maritime University. https://doi.org/10.1109/inista.2017.8001207 [Google Scholar]
  11. Wang, J., Apel, D. B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671–1696. https://doi.org/10.1016/j.jrmge.2022.01.009 [CrossRef] [Google Scholar]
  12. Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of remote work to ensure mobility in project activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
  13. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 1–11. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
  14. Asvadurov, S., Chavotier, A., Poulsen, J., & Roger, M. (2018). Data mining for miners: Using analytics for short-term price movement forecasting. McKinsey Analytics, 1–8. [Google Scholar]
  15. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of nonmetallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  16. Beshta, O., Cichoń, D., Beshta, O., Khalaimov, T., & Cabana, E. C. (2023). Analysis of the Use of Rational Electric Vehicle Battery Design as an Example of the Introduction of the Fit for 55 Package in the Real Estate Market. Energies, 16(24), 7927. https://doi.org/10.3390/en16247927 [CrossRef] [Google Scholar]
  17. Sala, D., & Bieda, B. (2019). Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inżynieria Mineralna, 2(2). https://doi.org/10.29227/im-2019-02-80 [Google Scholar]
  18. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Jonek-Kowalska, I., & Turek, M. (2017). Dependence of Total Production Costs on Production and Infrastructure Parameters in the Polish Hard Coal Mining Industry. Energies, 10(10), 1480. https://doi.org/10.3390/en10101480 [CrossRef] [Google Scholar]
  20. Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The Features of Sports Complex ‘SUNKAR’ Monitoring by Terrestrial Laser Scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 105–110. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-105-2023 [CrossRef] [Google Scholar]
  21. Picterra. (2023). How advanced analytics can help mining companies optimize production. Data science: Industries, 12 p. [Google Scholar]
  22. Psyuk, V., & Polyanska, A. (2024). The usege of artificial intelligence in the activities of mining enterprises. E3S Web of Conferences, (526), 01016. https://doi.org/10.1051/e3sconf/202452601016 [CrossRef] [EDP Sciences] [Google Scholar]
  23. Oliveira, P.G., Príncipe, J.C., & Cruz, A.N. (2019). A Distributed Processing Architecture for RealTime Biological Data Analysis. Cutting Edge Technologies and Microcomputer Applications for Developing Countries, 221–226. https://doi.org/10.4324/9780429042522-19 [CrossRef] [Google Scholar]
  24. Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
  25. Indrajaya, A.N. (2023). Cutting-edge business technology which creates business disruption while supporting the sustainable development goals of the United Nations. Cutting-Edge Business Technologies in the Big Data Era, 140–148. https://doi.org/10.1007/978-3-031-42463-2_14 [CrossRef] [Google Scholar]
  26. Zakrzewska-Bielawska, A., & Lewicka, D. (2021). A company’s relational strategy: Linkage between strategic choices, attributes, and outcomes. PLOS ONE, 16(7), e0254531. https://doi.org/10.1371/journal.pone.0254531 [CrossRef] [PubMed] [Google Scholar]
  27. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A., & Jangulova, G. (2023). Geophysical Studies of Rock Distortion in Mining Operations in Complex Geological Conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 57–62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023 [CrossRef] [Google Scholar]
  28. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences, 5(443), 13. https://doi.org/10.32014/2020.2518-170X.99 [Google Scholar]
  29. Wirth, H., Wanielista, K., Butra, J., & J. Kicki. (2010). Strategiczna i ekonomiczna ocena przemysłowych projektów inwestycyjnych. Wydawnictwo IGSMiE PAN, 163 p. [Google Scholar]
  30. Kopacz, M. (2015). The impact assessment of quality parameters of coal and waste rock on the value of mining investment projects – hard coal deposits. Gospodarka Surowcami Mineralnymi, 31(4), 161–188. https://doi.org/10.1515/gospo-2015-0037 [CrossRef] [Google Scholar]
  31. Bazaluk, O., Sadovenko, I., Zahrytsenko, A., Saik, P., Lozynskyi, V., & Dychkovskyi, R. (2021). Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field: Case Study. Sustainability, 13(13), 7161. https://doi.org/10.3390/su13137161 [CrossRef] [Google Scholar]
  32. Smith, G.L., & Brooks, L. (2018). Incorporation of the socio-cultural dimension into strategic longterm planning of mineral assets in South Africa. Journal of the Southern African Institute of Mining and Metallurgy, 118(4), 337–344. https://doi.org/10.17159/2411-9717/2018/v118n4a1 [CrossRef] [Google Scholar]
  33. Zuo, H., Luo, Z., Guan, J., & Wang, Y. (2013). Multidisciplinary design optimization on production scale of underground metal mine. Journal of Central South University, 20(5), 1332–1340. https://doi.org/10.1007/s11771-013-1620-x [CrossRef] [Google Scholar]
  34. Jurdziak, L., & Kawalec, W. (2007). Wykorzystanie nowoczesnych narzędzi informatycznych do optymalizacji funkcjonowania kopalni odkrywkowej ze szczególnym uwzględnieniem systemu transportu taśmowego. Gospodarka Surowcami Mineralnymi, 23(4). [Google Scholar]
  35. Kononenko, M., Khomenko, O., Cabana, E., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and +blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(v28/i3), 655–667. https://doi.org/10.46544/ams.v28i3.10 [CrossRef] [Google Scholar]
  36. Hussan, B., Takhanov, D., Kuzmin, S., & Abdibaitov, S. (2021). Research into influence of drillingand-blasting operations on the stability of the Kusmuryn open-pit sides in the Republic of Kazakhstan. Mining of Mineral Deposits, 15(3), 130–136. https://doi.org/10.33271/mining15.03.130 [CrossRef] [Google Scholar]
  37. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
  38. Galica, D., Malinowski, L., Kuchenbecker-Gacka, J., & Frycz, T. (2024). Predicting surface mining influences in an integrated mining design and planning system. E3S Web of Conferences, (526), 01018. https://doi.org/10.1051/e3sconf/202452601018 [CrossRef] [EDP Sciences] [Google Scholar]
  39. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  40. Malinowski, L. (2019). Influence of chosen technical constraints on stability of 3D geological model-based schedule in a complex longwall operation. E3S Web of Conferences, (123), 01024. https://doi.org/10.1051/e3sconf/201912301024 [CrossRef] [EDP Sciences] [Google Scholar]
  41. Dyczko, A. (2023). The geological modelling of deposits, production designing and scheduling in the JSW SA Mining Group. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(1), 35–62. https://doi.org/10.24425/gsm.2023.144628 [Google Scholar]
  42. Cichowlas, A., & Malinowski, L. (2024). Monitoring the share of barren rock in extracted run-ofmine using digital deposit model and mine structural model – case study. E3S Web of Conferences, (526), 01006. https://doi.org/10.1051/e3sconf/202452601006 [CrossRef] [EDP Sciences] [Google Scholar]
  43. Kuchta, M., Newman, A., & Topal, E. (2004). Implementing a Production Schedule at LKAB? Kiruna Mine. Interfaces, 34(2), 124–134. https://doi.org/10.1287/inte.34.2.124.30465 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.