Open Access
Issue |
E3S Web Conf.
Volume 569, 2024
GeoAmericas 2024 - 5th Pan-American Conference on Geosynthetics
|
|
---|---|---|
Article Number | 12004 | |
Number of page(s) | 10 | |
Section | Geosynthetic Properties 2 | |
DOI | https://doi.org/10.1051/e3sconf/202456912004 | |
Published online | 19 September 2024 |
- Tang, X., Chehab, G.R., Kim, S.: Laboratory study of geogrid reinforcement in Portland cement concrete. Pavement Crack. Mech. Model. Detect. Test. Case Hist. 769–778 (2008). https://doi.org/10.1201/9780203882191.ch75. [Google Scholar]
- El Meski, F., Chehab, G.R.: Flexural behavior of concrete beams reinforced with different types of geogrids. J. Mater. Civ. Eng. 26, 04014038 (2014). https://doi.org/10.1061/(asce)mt.1943-5533.0000920 [CrossRef] [Google Scholar]
- Pavithra, S., Tamil Selvi, M.: Experimental Study on Application of Geogrid in Concrete to Improve Its Flexural Strength. Lect. Notes Civ. Eng. 179, 1–8 (2022). https://doi.org/10.1007/978-981-16-5041-3_1 [CrossRef] [Google Scholar]
- Al Basiouni Al Masri, Z., Daou, A., Haj Chhade, R., Chehab, G.: Experimental and Numerical Assessment of the Behavior of Geogrid-Reinforced Concrete and Its Application in Concrete Overlays. J. Mater. Civ. Eng. 30, (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002542 [CrossRef] [Google Scholar]
- Itani, H., Saad, G., Chehab, G.: The use of geogrid reinforcement for enhancing the performance of concrete overlays: An experimental and numerical assessment. Constr. Build. Mater. 124, 826–837 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.013. [CrossRef] [Google Scholar]
- Al-Hedad, A.S.A., Hadi, M.N.S.: Effect of geogrid reinforcement on the flexural behaviour of concrete pavements. Road Mater. Pavement Des. 20, 1005–1025 (2019). https://doi.org/10.1080/14680629.2018.1428217. [CrossRef] [Google Scholar]
- RajeshKumar, K., Awoyera, P.O., Shyamala, G., Kumar, V., Gurumoorthy, N., Kayikci, S., Romero, L.M.B., Prakash, A.K.: Structural Performance of Biaxial Geogrid Reinforced Concrete Slab. Int. J. Civ. Eng. 0123456789, (2021). https://doi.org/10.1007/s40999-021-00668-y [Google Scholar]
- Al-Hedad, A.S.A., Bambridge, E., Hadi, M.N.S.: Influence of geogrid on the drying shrinkage performance of concrete pavements. Constr. Build. Mater. 146, 165–174 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.076. [CrossRef] [Google Scholar]
- ASTM C39/C39M: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1. ASTM Stand. B. i, 1–5 (2003) [Google Scholar]
- C496/C496M, A.: Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Man. Hydrocarb. Anal. 6th Ed. 545-545-3 (2008). https://doi.org/10.1520/mnl10913m. [Google Scholar]
- Shokr, M., Meguid, M.A., Bhat, S.: Experimental Investigation of the Tensile Response of Stiff Fiberglass Geogrid Under Varying Temperatures. Int. J. Geosynth. Gr. Eng. 8, (2022). https://doi.org/10.1007/s40891-022-00361-7 [Google Scholar]
- ASTM: Standard test method for flexural strength of concrete (using simple beam with third-point loading) C78/C78M-10., West Conshohocken, Conshohocken, PA (2015) [Google Scholar]
- Çağlar, Y., Şener, S.: Size effect tests of different notch depth specimens with support rotation measurements. Eng. Fract. Mech. 157, 43–55 (2016). https://doi.org/10.1016/j.engfracmech.2016.02.028. [CrossRef] [Google Scholar]
- Hoover, C.G., Bažant, Z.P.: Universal Size-Shape Effect Law Based on Comprehensive Concrete Fracture Tests. J. Eng. Mech. 140, 473–479 (2014). https://doi.org/10.1061/(asce)em.1943-7889.0000627 [CrossRef] [Google Scholar]
- Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beames. Mater. Struct. 18, 285–290 (1985) [CrossRef] [Google Scholar]
- Guan, J., Hu, X., Wang, Y., Li, Q., Wu, Z.: Effect of fracture toughness and tensile strength on fracture based on boundary effect theory. J. Hydraul. Eng. 47, 1298–1306 (2016) [Google Scholar]
- Wang, J.J., Tao, M.X., Nie, X.: Fracture energy-based model for average crack spacing of reinforced concrete considering size effect and concrete strength variation. Constr. Build. Mater. 148, 398–410 (2017). [CrossRef] [Google Scholar]
- Xu, P., Ma, J., Zhang, M., Ding, Y., Meng, L.: Fracture Energy Analysis of Concrete considering the Boundary Effect of Single-Edge Notched Beams. Adv. Civ. Eng. 2018, (2018). https://doi.org/10.1155/2018/3067236. [Google Scholar]
- Sümer, Y., Aktaş, M.: Defining parameters for concrete damage plasticity model. Chall. J. Struct. Mech. 1, 149–155 (2015). [Google Scholar]
- Al-Rifaie, H., Mohammed, D.: Comparative Assessment of Commonly Used Concrete Damage Plasticity Material Parameters. Eng. Trans. 70, 157–181 (2022). https://doi.org/10.24423/EngTrans.1645.20220613. [Google Scholar]
- Lubliner, J., Oliver, J., Oller, S., Oñate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25, 299–326 (1989). https://doi.org/10.1016/0020-7683(89)90050-4 [CrossRef] [Google Scholar]
- Lee, J., Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124, 892–900 (1998) [CrossRef] [Google Scholar]
- 318, A.C.I.C.: Building code requirements for structural concrete: (ACI 318-95); and commentary (ACI 318R-95). Farmington Hills, MI:American Concrete Institute, [1995] [Google Scholar]
- Zinkaah, O.H., Alridha, Z., Alhawat, M.: Numerical and theoretical analysis of FRP reinforced geopolymer concrete beams. Case Stud. Constr. Mater. 16, e01052 (2022). [Google Scholar]
- Tao, Z., Wang, Z. Bin, Yu, Q.: Finite element modelling of concrete-filled steel stub columns under axial compression. J. Constr. Steel Res. 89, 121–131 (2013). [CrossRef] [Google Scholar]
- Temsah, Y., Jahami, A., Khatib, J., Sonebi, M.: Numerical analysis of a reinforced concrete beam under blast loading. MATEC Web Conf. 149, 02063 (2018). https://doi.org/10.1051/matecconf/201814902063. [CrossRef] [EDP Sciences] [Google Scholar]
- Raza, A., Khan, Q.U.Z., Ahmad, A.: Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in abaqus. Adv. Civ. Eng. 2019, (2019). https://doi.org/10.1155/2019/1745341. [Google Scholar]
- Manual, A.U.: Version 6.8, Hibbitt, Karls-son & Sorensen. Inc., Pawtucket, Rhode Island, USA. (2008) [Google Scholar]
- Genikomsou, A.S., Polak, M.A.: Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Eng. Struct. 98, 38–48 (2015). https://doi.org/10.1016/j.engstruct.2015.04.016. [CrossRef] [Google Scholar]
- Lee, S.H., Abolmaali, A., Shin, K.J., DuLee, H.: ABAQUS modeling for posttensioned reinforced concrete beams. J. Build. Eng. 30, 101273 (2020). https://doi.org/10.1016/j.jobe.2020.101273. [CrossRef] [Google Scholar]
- Bencardino, F., Condello, A.: SRG / SRP – concrete bond – slip laws for externally strengthened RC beams. 132, 804–815 (2015). [Google Scholar]
- Ibrahim, A.M.A., Fahmy, M.F.M., Wu, Z.: 3D finite element modeling of bondcontrolled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading. Compos. Struct. 143, 33–52 (2016). [CrossRef] [Google Scholar]
- Elchalakani, M., Karrech, A., Dong, M., Mohamed Ali, M.S., Yang, B.: Experiments and Finite Element Analysis of GFRP Reinforced Geopolymer Concrete Rectangular Columns Subjected to Concentric and Eccentric Axial Loading. Structures. 14, 273–289 (2018). https://doi.org/10.1016/j.istruc.2018.04.001. [CrossRef] [Google Scholar]
- Gouda, O., Asadian, A., Galal, K.: Flexural and Serviceability Behavior of Concrete Beams Reinforced with Ribbed GFRP Bars. J. Compos. Constr. 26, 1–19 (2022). [CrossRef] [Google Scholar]
- Raza, A., Ahmad, A.: Numerical investigation of load-carrying capacity of GFRPreinforced rectangular concrete members using CDP model in ABAQUS. Adv. Civ. Eng. 2019, (2019) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.